Skip to main content
Log in

Influence of the Silicon Dioxide Layer Thickness on Electroforming in Open TiN–SiO2–W Sandwiches

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Based on experimental data for electroforming in open TiN–SiO2–W sandwich structures (the end face of d = 10–30-nm-thick SiO2 films exposed to vacuum served as an insulating trench), it has been shown that the voltage at which conducive particles (CPs) arise (i.e., the electroforming onset voltage) changes insignificantly with decreasing thickness d. The electroforming process is initiated by a voltage with a threshold near 8.5 V, rather than by electric field strength. This value far exceeds the CP formation voltage threshold when already formed structures switch over (3–4 V). This points to the existence of two nonthermal mechanisms that activate CP formation under electron impact. In the case of electroforming, this is dissociative attachment of an electron, which causes an oxygen atom to escape into vacuum and, hence, an increase in the silicon atom concentration on the surface of the insulating trench. In the case of switching, this is a change in the molecular state of oxygen (or hydrogen) on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970).

    Article  ADS  Google Scholar 

  2. H. Pagnia and N. Sotnik, Phys. Status Solidi A 108 (11), 11 (1988).

    Article  ADS  Google Scholar 

  3. V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin, Nanotechnol. Russ. 4, 121 (2009).

    Article  Google Scholar 

  4. Y. F. Chang, B. Fowler, F. Zhou, Y.-C. Chen, and J. C. Lee, Appl. Phys. Lett. 108, 033504 (2016).

    Article  ADS  Google Scholar 

  5. V. M. Mordvintsev and V. L. Levin, Tech. Phys. 44, 1322 (1999).

    Article  Google Scholar 

  6. V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin, in Silicon Nanostructures. Physics. Technology. Modeling, Ed. by V. I. Rudakov (INDIGO, Yaroslavl, 2014), p. 493.

    Google Scholar 

  7. V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin, Nanotechnol. Russ. 4, 129 (2009).

    Article  Google Scholar 

  8. V. M. Mordvintsev and S. E. Kudryavtsev, Russ. Microelectron. 42, 68 (2013).

    Article  Google Scholar 

  9. V. M. Mordvintsev and S. E. Kudryavtsev, Russ. Microelectron. 46, 243 (2017).

    Article  Google Scholar 

  10. V. M. Mordvintsev, V. V. Naumov, and S. G. Simakin, Russ. Microelectron. 45, 242 (2016).

    Article  Google Scholar 

  11. P. S. Zakharov, Candidate’s Dissertation in Mathematics and Physics (Moscow Inst. of Physics and Technology, Moscow, 2016).

  12. A. V. Eletskii and B. M. Smirnov, Sov. Phys. Usp. 28, 956 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mordvintsev.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordvintsev, V.M., Kudryavtsev, S.E. & Levin, V.L. Influence of the Silicon Dioxide Layer Thickness on Electroforming in Open TiN–SiO2–W Sandwiches. Tech. Phys. 63, 1629–1635 (2018). https://doi.org/10.1134/S106378421811018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421811018X

Keywords

Navigation