Skip to main content
Log in

Electrophysical Setup for the Conversion of Natural Gas at Atmospheric Pressure

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The conversion of hydrocarbons during the treatment of a methane–ethane mixture with a barrier discharge in an electrophysical setup was experimentally studied. The theoretical estimation of plasmakinetic processes occurring in a discharge was performed for the developed plasmachemical reactor using the ZDPlasKin algorithm. Experimental results were in agreement with theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. G. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Mosk. Gos. Univ., Moscow, 1989).

    Google Scholar 

  2. V. D. Rusanov, A. A. Fridman, and G. V. Sholin, Sov. Phys. Usp. 24, 447 (1981). doi 10.1070/PU1981v024n06ABEH004884

    Article  ADS  Google Scholar 

  3. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987).

    Google Scholar 

  4. A. A. Chukalovsky, T. V. Rakhimova, K. S. Klopovsky, Yu. A. Mankelevich, and O. V. Proshina, Plasma Phys. Rep. 40, 52 (2014). doi 10.1134/S1063780X14010048

    Article  ADS  Google Scholar 

  5. X. Tan, A. Thursfield, I. S. Metcalfe, and K. Li, Asia-Pac. J. Chem. Eng. 4, 251 (2009).

    Article  Google Scholar 

  6. J. F. Munera, L. Coronel, B. Faroldi, E. A. Lombardo, L. M. Cornaglia, Asia-Pac. J. Chem. Eng. 5, 35 (2010).

    Article  Google Scholar 

  7. J. H. Lunsford, Catal. Today 63, 165 (2000).

    Article  Google Scholar 

  8. S. L. Yao, E. Suzuki, N. Meng, and A. Nakayama, Plasma Chem. Plasma Process. 22, 225 (2002).

    Article  Google Scholar 

  9. X. Li, A. Zhu, K. Wanga, Y. Xua, and Z. Song, Catal. Today 98, 617 (2004).

    Article  Google Scholar 

  10. S. Kado, Y. Sekine, N. Muto, T. Nozaki, and K. Okazaki, Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 406.

  11. A. Indarto, N. Coowanitwong, J. Choi, H. Lee, and H. Song, Fuel Process. Technol. 89 (2), 214 (2008).

    Article  Google Scholar 

  12. C. D. Bie, B. Verheyde, T. Martens, J. Dijk, S. Paulussen, and A. Bogaerts, Plasma Process. Polym. 8, 1033 (2011).

    Article  Google Scholar 

  13. V. E. Malanichev, M. V. Malashin, S. I. Moshkunov, S. V. Nebogatkin, V. Yu. Khomich, and V. M. Shmelev, Tech. Phys. Lett. 43, 460 (2017). doi 10.1134/S1063785017050224

    Article  ADS  Google Scholar 

  14. E. V. Ivanov, S. I. Moshkunov, and V. Yu. Khomich, Prikl. Fiz., No. 2, 122 (2006).

  15. E. V. Ivanov, S. I. Moshkunov, and V. Yu. Khomich, Instrum. Exp. Tech. 49, 80 (2006).

    Article  Google Scholar 

  16. M. V. Malashin, S. I. Moshkunov, V. Yu. Khomich, and E. A. Shershunova, Instrum. Exp. Tech. 59, 226 (2016).

    Article  Google Scholar 

  17. M. V. Malashin, S. I. Moshkunov, V. Yu. Khomich, and E. A. Shershunova, Tech. Phys. Lett. 41, 436 (2015).

    Article  ADS  Google Scholar 

  18. M. V. Malashin, S. I. Moshkunov, V. Yu. Khomich, E. A. Shershunova, and V. A. Yamshchikov, Tech. Phys. Lett. 39, 252 (2013).

    Article  ADS  Google Scholar 

  19. V. Yu. Khomich, M. V. Malashin, S. I. Moshkunov, E. A. Shershunova, and V. A. Yamschikov, IEEE Trans. Plasma Sci. 42, 3314 (2014).

    Article  ADS  Google Scholar 

  20. V. Yu. Khomich, V. E. Malanichev, M. V. Malashin, and S. I. Moshkunov, IEEE Trans. Plasma Sci. 44, 1349 (2016).

    Article  ADS  Google Scholar 

  21. https://www.zdplaskin.laplace.univ-tlse.fr.

  22. https://www.bolsig.laplace.univ-tlse.fr.

  23. http://www.lxcat.net/Hayashi.

  24. V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).

    Article  ADS  Google Scholar 

  25. L. B. Loeb and J. M. Meek, The Mechanism of the Electric Spark (Stanford Univ. Press, Stanford, 1941), Chap. 2.

    Google Scholar 

  26. M. Kettlitz, H. Höft, T. Holder, K.-D. Weltmann, and R. Brandenburg, Plasma Sources Sci. Technol. 22, 025003 (2013).

    Article  ADS  Google Scholar 

  27. R. Brandenburg, H.-E. Wagner, A. M. Morozov, and K. V. Kozlov, J. Phys. D 38, 1649 (2005).

    Article  ADS  Google Scholar 

  28. http://www.lxcat.net/Morgan.

  29. http://www.lxcat.net/Puech.

  30. http://www.lxcat.net/Biagi.

  31. R. K. Janev and D. Reiter, Phys. Plasmas 9, 4071 (2002).

    Article  ADS  Google Scholar 

  32. R. K. Janev and D. Reiter, Phys. Plasmas 11, 780 (2004).

    Article  ADS  Google Scholar 

  33. S. J. B. Corrigan, J. Chem. Phys. 43, 4381 (1965).

    Article  ADS  Google Scholar 

  34. G. Scarduelli, G. Guella, I. Mancini, G. Dilecce, S. Benedictis, and P. Tosi, Plasma Process. Polym. 6, 27 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Malanichev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malanichev, V.E., Malashin, M.V., Ozerskii, A.V. et al. Electrophysical Setup for the Conversion of Natural Gas at Atmospheric Pressure. Tech. Phys. 63, 1596–1602 (2018). https://doi.org/10.1134/S1063784218110178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110178

Keywords

Navigation