Advertisement

Technical Physics

, Volume 63, Issue 11, pp 1672–1677 | Cite as

Nonuniform Elastic Strain and Memristive Effect in Aligned Carbon Nanotubes

  • M. V. Il’ina
  • O. I. Il’in
  • Yu. F. Blinov
  • V. A. Smirnov
  • O. A. Ageev
PHYSICAL ELECTRONICS
  • 11 Downloads

Abstract

The simulation results of elastic strain of an aligned carbon nanotube under the influence of a local external electric field are reported. A method for inducing controllable nonuniform elastic strain in a vertically aligned carbon nanotube, which is a prerequisite for a reproducible memristive effect in such nanotubes, is developed. The passage of current through elastically strained carbon nanotubes with aspect ratios from 20 to 30 is examined experimentally. It is demonstrated that the resistance of a nanotube with its relative strain changing from 0.02% to 0.07% increases by a factor of 5.2 in the high-resistance state due to an increase in the strength of the internal electric field, thus resulting in a stronger memristive effect.

Notes

REFERENCES

  1. 1.
    J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, Nanoscale Res. Lett. 9, 1 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    J. G. Zhu, Proc. IEEE 96, 1786 (2008).CrossRefGoogle Scholar
  3. 3.
    S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-Ch. Chen, R. M. Shelby, M. Salinga, D. Krebs, Sh.-H. Chen, H.-L. Lung, and Ch. H. Lam, IBM J. Res. Dev. 52, 465 (2008).CrossRefGoogle Scholar
  4. 4.
    H. Akinaga and H. Shima, Proc. IEEE 98, 2237 (2010).CrossRefGoogle Scholar
  5. 5.
    L. O. Chua, Proc. IEEE 91, 1830 (2003).CrossRefGoogle Scholar
  6. 6.
    J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    L. O. Chua, Appl. Phys. A 102, 765 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    T. Rueckes,   K. Kim,   E. Joselevich,   G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, Science 289, 94 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    Z. Ren, Y. Lan, and Y. Wang, Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices (Springer, Berlin, 2013).CrossRefGoogle Scholar
  11. 11.
    M. V. Il’ina, O. I. Il’in, Yu. F. Blinov, V. A. Smirnov, A. S. Kolomiytsev, A. A. Fedotov, B. G. Konoplev, and O. A. Ageev, Carbon 123, 514 (2017).CrossRefGoogle Scholar
  12. 12.
    O. A. Ageev, Yu. F. Blinov, O. I. Il’in, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Phys. Solid State 57, 825 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. Bartolomeo, A. Scarfato, F. Giubileo, F. Bobba, M. Biasiucci, A. M. Cucolo, S. Santucci, and M. Passacantando, Carbon 45, 2957 (2007).CrossRefGoogle Scholar
  14. 14.
    D. V. Gorodetskiy, A. V. Gusel’nikov, S. N. Shevchenko, M. A. Kanygin, A. V. Okotrub, and Y. V. Pershin, J. Nanophotonics 10, 012524 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Zuo, Y. Ren, Z. Wang, X. Han, and L. Xi, Org. Electron. 14, 2306 (2013).CrossRefGoogle Scholar
  16. 16.
    Sh. Parveen, S. Husain, A. Kumar, J. Ali, H. Husain, and M. Husain, ISRN Nanomater. 2012, 971854 (2012).CrossRefGoogle Scholar
  17. 17.
    O. A. Ageev, Yu. F. Blinov, O. I. Il’in, A. S. Kolomii-tsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Tech. Phys. 58, 1831 (2013).CrossRefGoogle Scholar
  18. 18.
    B. Liu, H. Jiang, H. T. Johnson, and Y. Huang, J. Mech Phys. Solids 52, 1 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Nakayama, A. Nagataki, O. Suekane, X. Cai, and S. Akita, Jpn. J. Appl. Phys. 44, 720 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Zelisko, Y. B. Hanlumyuang, S. C. Yang, Y. D. Liu, C. D. Lei, J. D. Li, P. M. C. Ajayan, and P. Sharma, Nat. Commun. 5, 1 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Chandratre and P. Sharma, Appl. Phys. Lett. 100, 023114 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    R. Maranganti, N. D. Sharma, and P. Sharma, Phys. Rev. B 74, 014110 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    W. Lu, D. Wang, and L. Chen, Nano Lett. 7, 2729 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    B. Kozinsky and N. Marzari, Phys. Rev. Lett. 96, 166801 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    A. Mayer, Phys. Rev. B 71, 235333 (2005).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Dietzel, S. Marsaudon, J. P. Aime, C. V. Nguyen, and G. Couturier, Phys. Rev. B 72, 035445 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    O. A. Ageev, Yu. F. Blinov, M. V. Il’ina, O. I. Il’in, V. A. Smirnov, and O. G. Tsukanova, Phys. Solid State 58, 309 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    O. A. Ageev, S. V. Balakirev, Al. V. Bykov, E. Yu. Gusev, A. A. Fedotov, J. Y. Jityaeva, O. I. Il’in, M. V. Il’ina, A. S. Kolomiytsev, B. G. Konoplev, S. U. Krasnoborodko, V. V. Polyakov, V. A. Smirnov, M. S. Solodovnik, and E. G. Zamburg, in Advanced Materials – Manufacturing, Physics, Mechanics and Applications, Ed. by I.  A.  Parinov, Sh.-H. Chang, and V. Yu. Topolov (Springer, 2016), p. 563.Google Scholar
  29. 29.
    O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Nanotechnol. Russ. 7, 47 (2012).CrossRefGoogle Scholar
  30. 30.
    J. Maultzsch, S. Reich, and C. Thomsen, Phys. Rev. B 65, 233402 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Adv. Phys. 60, 413 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    B. G. Konoplev, O. A. Ageev, V. A. Smirnov, A. S. Kolomiitsev, and N. I. Serbu, Russ. Microelectron. 41, 41 (2012).CrossRefGoogle Scholar
  33. 33.
    L. Liu, G. Cao, and X. Chen, J. Nanomater. 2008, 271763 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Research and Educational Center Nanotechnology, Southern Federal UniversityTaganrogRussia

Personalised recommendations