Skip to main content
Log in

Application of the Donkin Formula in the Theory of Electrostatic Prisms

  • ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An electrostatic prism is an electron- and ion-optical device that transforms a parallel input beam of charged particles into a parallel output beam that is deflected by an angle dependent on the energy of a charged particle beam. The principle of similarity of trajectories for electric fields that are homogeneous in Euler terms provides perfect optical properties of electrostatic prisms when the fields with zero power of homogeneity are used. It is shown that the Donkin formula for 3D homogeneous harmonic functions makes it possible to employ analytical expressions using homogeneous electric potentials of a zero power. A few examples of electrostatic prisms are calculated using the Donkin formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The deflection angle and optical properties of the prism can also be controlled using input and output equipotential surfaces with identical nonzero potentials. For an immersion prism, the input and output equipotential surfaces may have different potentials. Such specific cases are not analyzed in this work.

REFERENCES

  1. P. G. Gabdullin, Yu. K. Golikov, N. K. Krasnova, and S. N. Davydov, Tech. Phys. 45, 232 (2000).

    Article  Google Scholar 

  2. P. G. Gabdullin, Yu. K. Golikov, N. K. Krasnova, and S. N. Davydov, Tech. Phys. 45, 330 (2000).

    Article  Google Scholar 

  3. S. Ya. Yavor, Focusing Charged Particles with Quadrupole Lenses (Atomizdat, Moscow, 1968).

    Google Scholar 

  4. G. M. Fichtenholz, A Course of Differential and Integral Calculus (Fizmatlit, Moscow, 2001), Vol. 1.

    Google Scholar 

  5. V. I. Smirnov, Advanced Mathemtics Course (BKhV-Peterburg, St. Petersburg, 2008), Vol. 1.

  6. A. S. Berdnikov, I. A. Averin, N. K. Krasnova, and K. V. Solov’ev, Vestn. Aktyubinskogo Reg. Gos. Univ. Fiz.-Mat. Nauki, No. 2(44), 147 (2016).

    Google Scholar 

  7. A. S. Berdnikov, I. A. Averin, N. K. Krasnova, and K. V. Solov’ev, Usp. Prikl. Fiz. 5 (1), 10 (2017).

    Google Scholar 

  8. Yu. K. Golikov and N. K. Krasnova, Prikl. Fiz., No. 2, 5 (2007).

  9. Yu. K. Golikov, A. S. Berdnikov, A. S. Antonov, N. K. Krasnova, and K. V. Solov’ev, Tech. Phys. 63, 593 (2018).

    Article  Google Scholar 

  10. V. M. Kel’man, S. P. Karetskaya, L. V. Fedulina, and E. M. Yakushev, Electron-Optical Elements of Prism Spectrometers for Charged Particles (Nauka, Alma-Ata, 1979).

  11. V. M. Kel’man, I. V. Rodnikova, and L. M. Sekunova, Static Mass Spectrometers (Nauka, Alma-Ata, 1985).

  12. V. V. Lukashevich, Phys. Part. Nucl. 34, 786 (2003).

    Google Scholar 

  13. W. F. Donkin, Philos. Trans. R. Soc. London 147, 43 (1857).

    Article  ADS  Google Scholar 

  14. W. F. Donkin, Proc. R. Soc. London 8, 307 (1856–1857).

  15. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chelsea Publ. Co., 1931).

    MATH  Google Scholar 

  16. A. S. Berdnikov, I. A. Averin, N. K. Krasnova, and K. V. Solov’ev, Nauchn. Priborostr. 26 (4), 13 (2016).

    Article  Google Scholar 

  17. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (AMS Press, 1944), Part II.

  18. Yu. K. Golikov, Vestn. Aktyubinskogo Reg. Gos. Univ. Fiz.-Mat. Nauki, No. 2(44), 59 (2016).

    Google Scholar 

  19. Yu. K. Golikov, Vestn. Aktyubinskogo Reg. Gos. Univ. Fiz.-Mat. Nauki, No. 2(44), 165 (2016).

    Google Scholar 

  20. A. S. Berdnikov and N. K. Krasnova, Nauchn. Priborostr. 25 (2), 69 (2015).

    Article  Google Scholar 

  21. I. A. Averin and A. S. Berdnikov, Usp. Prikl. Fiz. 4 (1), 5 (2016).

    Google Scholar 

  22. Lavrent’ev, M.A. and Shabat, B.V., Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1965).

    Google Scholar 

  23. P. F. Fil’chakov, Approximate Conformal Mapping Methods (Naukova Dumka, Kiev, 1964).

    Google Scholar 

  24. http://simion.com.

  25. http://wolfram.com/mathematica/.

  26. http://www.getpaint.net.

  27. A. S. Berdnikov, N. K. Krasnova, and K. V. Solov’ev, Nauchn. Priborostr. 27 (4), 63 (2017).

    Article  Google Scholar 

  28. A. S. Berdnikov, N. K. Krasnova, and K. V. Solov’ev, Nauchn. Priborostr. 27 (4), 72 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Berdnikov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golikov, Y.K., Berdnikov, A.S., Antonov, A.S. et al. Application of the Donkin Formula in the Theory of Electrostatic Prisms. Tech. Phys. 63, 1659–1666 (2018). https://doi.org/10.1134/S1063784218110117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110117

Keywords

Navigation