Skip to main content
Log in

Modeling and Calculation of Nanofluid Flows in a Boundary Layer

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The flow of so-called nanofluid (a dispersed mixture of liquid and nanoscale particles) in a boundary layer is considered within the framework of the diffusion approximation. The cases causing incompressibility of a nanofluid are analyzed. A self-similar problem is formulated and solved using a numerical method. Some of the calculation results illustrating the nature of nanofluid behavior in a boundary layer on a longitudinally streamlined plate under different temperature regimes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. U. S. Choi, in Developments and Applications of Non-Newtonian Flows, Ed. by D. A. Siginer and H. P. Wang (ASME, New York, 1995), p. 99.

    Google Scholar 

  2. S. P. Bardakhanov, S. A. Novopashin, and M. A. Serebryakova, Nanosist.: Fiz., Khim., Mat. 3 (1), 27 (2012).

    Google Scholar 

  3. J. Buongiorno, J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  4. A. V. Kuznetsov and D. Nield, Int. J. Therm. Sci. 49, 243 (2010).

    Article  Google Scholar 

  5. F. Kowsary and M. Heyhat, Nanomech. Sci. Technol.: Int. J. 1, 257 (2010).

    Google Scholar 

  6. M. H. Yasin, A. Ishak, and I. Pop, J. Porous Media 19, 331 (2016).

    Article  Google Scholar 

  7. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1983), Vol. 1.

    Google Scholar 

  8. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987), Vol. 1.

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1988).

    Google Scholar 

  10. L. G. Loitsyanskii, Fluid Mechanics (Nauka, Moscow, 1987).

    Google Scholar 

  11. A. Einstein, Investigations on the Theory of Brownian Movement (Dover, New York, 1954).

    Google Scholar 

  12. G. S. McNab and A. Meisen, J. Colloid Interface Sci. 44, 339 (1973).

    Article  ADS  Google Scholar 

  13. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1881).

    MATH  Google Scholar 

  14. M. Mooney, J. Colloid Sci. 6, 162 (1951).

    Article  Google Scholar 

  15. T. L. Smith and C. A. Bruce, J. Colloid Interface Sci. 72, 13 (1979).

    Article  ADS  Google Scholar 

  16. B. C. Pak and Y. Cho, Exp. Heat Transfer 11, 151 (1998).

    Article  ADS  Google Scholar 

  17. V. Ya. Rudyak, A. A. Belkin, and V. V. Egorov, Tech. Phys. 54, 1102 (2009).

    Article  Google Scholar 

  18. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 60, 798 (2015).

    Article  Google Scholar 

  19. V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 62, 1456 (2017).

    Article  Google Scholar 

  20. A. A. Amosov, Yu. A. Dubinskii, and N. V. Kopchenova, Computational Methods for Engineers (Vysshaya Shkola, Moscow, 1994).

    Google Scholar 

  21. T. Y. Na, Computational Methods in Engineering Boundary Value Problems (Academic, 1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Amanbaev.

Additional information

Translated by L. P. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanbaev, T.R. Modeling and Calculation of Nanofluid Flows in a Boundary Layer. Tech. Phys. 63, 1582–1589 (2018). https://doi.org/10.1134/S1063784218110026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110026

Keywords

Navigation