Skip to main content
Log in

Method for the Search for the Size Standard Peaks in Fragment Analysis of DNA

  • INSTRUMENT DEVELOPMENT AND DEVICES FOR PRACTICAL APPLICATIONS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Fragment analysis of DNA by the capillary gel-electrophoresis method is an effective tool for studying the DNA structure, which has a large number of applications (in particular, for genetic expertise of breeds and breed samples of a number of important crops). Fragment analysis of DNA is carried out in several stages. The stage of processing of the results of investigations includes the procedure of detection of peaks for standard DNA fragments. We list the features of the spectrum of the DNA fragment distribution, which necessitate the development of a new method for detecting peaks of a standard. We propose a method for their search based on comparison of the aggregate of standard lengths of DNA fragments and spectral peaks and describe the algorithm for implementing this method. We also consider in detail the critical stage of the algorithm, i.e., the choice of the threshold for the procedure of detection of peaks in the spectrum. The advantages and disadvantages of the method are enumerated and the results of testing are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Watson and F. Crick, Nature 171, 737 (1953).

    Article  ADS  Google Scholar 

  2. https://www.nobelprize.org/nobel_prizes/medicine/laureates/1962/.

  3. F. H. Crick, L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature 192, 1227 (1961).

    Article  ADS  Google Scholar 

  4. Yu. A. Ovchinnikov, Bioorganic Chemistry (Prosveshchenie, Moscow, 1987).

  5. Nucleic Acids in Chemistry and Biology, Ed. by G. M. Blackburn, M. J. Gait, D. Loakes, and D. M. Williams (Royal Society of Chemistry, 2006), p. 168.

    Google Scholar 

  6. F. Sanger, S. Nicklen, and A. R. Coulson, Proc. Natl. Acad. Sci. U. S. A. 74, 5463 (1977).

    Article  ADS  Google Scholar 

  7. W. Fiers, R. Contreras, G. Haegemann, R. Rogiers, A. van de Voorde, H. van Heuverswyn, J. van Herreweghe, G. Volckaert, and M. Ysebaert, Nature 273, 113 (1978).

    Article  ADS  Google Scholar 

  8. V. B. Reddy, B. Thimmappaya, R. Dhar, K. N. Subramanian, B. S. Zain, J. Pan, P. K. Ghosh, M. L. Celma, and S. M. Weissman, Science 200, 494 (1978).

    Article  ADS  Google Scholar 

  9. B. K. Nunnally, H. He, L. C. Li, S. A. Tucker, and L. B. McGown, Anal. Chem. 69, 2392 (1997).

    Article  Google Scholar 

  10. B. J. Bergot, V. Chakerian, C. R. Connell, J. S. Eadie, S. Fung, N. D. Hershey, L. G. Lee, S. M. Menchen, and S. L. Woo, US Patent No. 5366860 (1989).

  11. L. G. Lee, S. L. Spurgeon, C. R. Heiner, S. C. Benson, B. B. Rosenblum, S. M. Menchen, R. J. Graham, A. Constantinescu, K. G. Upadhya, and J. M. Cassel, Nucleic Acids Res. 25, 2816 (1997).

    Article  Google Scholar 

  12. S. M. Menchen, L. G. Lee, C. R. Connell, N. D. Hershey, A. Chakerian, S. Woo, and S. Fung, US Patent No. 5188934 (1993).

  13. B. B. Rosenblum, L. G. Lee, S. L. Spurgeon, S. H. Khan, S. M. Menchen, C. R. Heiner, S. M. Chen, Nucleic Acids Res. 25 (22), 4500 (1997).

    Article  Google Scholar 

  14. J. Ju, C. Ruan, C. W. Fuller, A. N. Glazer, and R. A. Mathies, Proc. Natl. Acad. Sci. U. S. A. 92, 4347 (1995).

    Article  ADS  Google Scholar 

  15. R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, and C. J. Lewis, Bioconjugate Chem. 4, 105 (1993).

    Article  Google Scholar 

  16. O. Tu, T. Knott, M. Marsh, K. Bechtol, D. Harris, D. Barker, and J. Bashkin, Nucleic Acids Res. 26, 2797 (1998).

    Article  Google Scholar 

  17. S. Tabor and C. C. A. Richardson, Proc. Natl. Acad. Sci. U. S. A. 92, 6339 (1995).

    Article  ADS  Google Scholar 

  18. D. A. Belov, Yu. V. Belov, V. V. Manoilov, and V. E. Kurochkin, Nauchn. Priborostr. 24 (3), 87 (2014).

    Google Scholar 

  19. I. V. Zarutskii and V. V. Manoilov, Nauchn. Priborostr. 17 (1), 115 (2007).

    Google Scholar 

  20. V. V. Manoilov and I. V. Zarutskii, Nauchn. Priborostr. 12 (3), 38 (2002).

    Google Scholar 

  21. V. V. Manoilov and I. V. Zarutskii, Nauchn. Priborostr. 19 (3), 35 (2009).

    Google Scholar 

  22. C. E. Cook and M. Bernfeld, Radar Signals (Academic, 1967).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Federal Agency of Scientific Organizations of Russia under the subprogram “Development of Selection and Potato Seed Farming in the Russian Federation” of the Federal Scientific and Technical Program of Development of Agriculture for 2017–2025 “Development of Software for Genetic Enterprise of Potato Breeds and Breed Samples,” and additional state assignment no. 007-02-2014 of the Institute of Analytic Instrument Making of the Russian Academy of Sciences dated November 18, 2017. The research was performed on high-cost equipment “NANOFOR 05” genetic analyzer of the Collective Use Center Biotechnology, Federal State Budget Scientific Enterprise, All-Russia Research Institute of Agricultural Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zarutskii.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarutskii, I.V., Manoilov, V.V., Samsonova, N.S. et al. Method for the Search for the Size Standard Peaks in Fragment Analysis of DNA. Tech. Phys. 63, 1364–1369 (2018). https://doi.org/10.1134/S1063784218090244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090244

Keywords

Navigation