Skip to main content
Log in

Biologically Active Hybrid Nanosystems Based on Zero-Valent Selenium Nanoparticles, Biocompatible Polymers, and Polyelectrolitic Complex

  • PHYSICAL APPROACHES AND PROBLEMS OF DATA INTERPRETATION IN THE LIFE SCIENCES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The molecular-conformal, morphological, and kinetic characteristics of selenium-containing nanosystems (NSs) based of biocompatible polymer matrices of different origins modified Se0 nanoparticles for the Se0 : polymer mass ratio ν = 0.1 have been analyzed using static and dynamic light scattering methods, UV spectroscopy, flow birefringence, and atomic force and transmission electron microscopies. We have determined the rate constants for the formation of selenium-containing NSs, the size characteristics of the corresponding nanostructures, as well as their shape, molecular mass, and density. It is found that isolated dense spherical polymolecular selenium-containing nanostructures are formed in the aqueous solution. Our results can be used as the physicochemical foundation for the modification of polymer materials with clearly manifested physiological activity by biogenic elements in the zero-valent form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Yoshizawa, W. C. Willett, and S. J. Morris, J. Natl. Cancer Inst. 90, 1219 (1998). doi 10.1093/jnci/90.16.1219

    Article  Google Scholar 

  2. G. M. Abdullaev, E. M. Zeinally, and Yu. I. Safarov, Vrach. Delo, No. 11, 35 (1978).

    Google Scholar 

  3. S. Y. Yu, Y. J. Zhu, and W. G. Li, Biol. Trace Elem. Res. 51, 117 (1997). doi 10.1007/BF02778987

    Article  Google Scholar 

  4. S. V. Valueva, L. N. Borovikova, and A. Ya. Volkov, Proc. Int. Scientific–Practical Conf. “Science Days,” Prague, Czech Republic, 2012, p. 24.

  5. S. V. Valueva, T. E. Sukhanova, N. A. Matveeva, M. E. Vylegzhanina, and M. L. Gel’fond, Proc. Int. Scientific–Practical Conf. “High Technologies and Basic and Applied Research in Physiology and Medicine,” St. Petersburg, Russia, 2011, p. 130.

  6. S. V. Valueva, S. G. Azizbekyan, M. P. Kuchinskii, A. R. Nabiullin, and T. E. Sukhanova, Nanotekhnika, No. 4 (32), 53 (2012).

  7. V. V. Kopeikin, Biol. Membr. 5, 728 (1988).

    Google Scholar 

  8. I. V. Berezin and A. A. Klesov, Practical Course in Chemical and Enzyme Kinetics (Mosk. Gos. Univ., Moscow, 1976).

    Google Scholar 

  9. V. E. Eskin, Light Scattering by Solutions of Polymers and Properties of Macromolecules (Nauka, Leningrad, 1986).

    Google Scholar 

  10. N. V. Pogodina and N. V. Tsvetkov, Macromolecules 30, 4897 (1997). doi 10.1021/ma9617983

    Article  ADS  Google Scholar 

  11. W. Brown, Dynamic Light Scattering: The Method and Some Applications (Clarendon, Oxford, 1993).

    Google Scholar 

  12. M. Meewes, J. Ricka, M. De Silva, R. Nuffengger, and Th. Binkert, Macromolecules 24, 5811 (1991). doi 10.1021/ma00021a014

    Article  ADS  Google Scholar 

  13. I. Nishio, S.-T. Sun, G. Swislow, and T. Tanaka, Nature 281, 208 (1979). doi 10.1038/281208a0

    Article  ADS  Google Scholar 

  14. T. Konishi, T. Yoshizaki, and H. Yamakawa, Macromolecules 24, 5614 (1991). doi 10.1021/ma00020a021

    Article  ADS  Google Scholar 

  15. B. W. Burchard, in Laser Light Scattering in Biochemistry, Ed. by S. E. Harding, D. B. Sattelle, and V. A. Bloomfield (Royal Society of Chemistry, Cambridge, 1992), pp. 3–21.

    Google Scholar 

  16. V. N. Tsvetkov, V. E. Eskin, and S. Ya. Frenkel’, Structure of Macromolecules in Solution (Nauka, Moscow, 1964).

    Google Scholar 

  17. S. V. Valueva, L. N. Borovikova, V. V. Koreneva, Ya. I. Nazarkina, A. I. Kipper, and V. V. Kopeikin, Russ. J. Phys. Chem. A 81, 1170 (2007).

    Article  Google Scholar 

  18. S. V. Valueva, L. N. Borovikova, and A. I. Kipper, Russ. J. Phys. Chem. A 82, 996 (2008).

    Article  Google Scholar 

  19. S. V. Valueva and L. N. Borovikova, Butlerovskie Soobshch. 20 (5), 52 (2010).

    Google Scholar 

  20. S. V. Valueva, M. E. Vylegzhanina, V. K. Lavrent’ev, L. N. Borovikova, and T. E. Sukhanova, Russ. J. Phys. Chem. A 87, 484 (2013).

    Article  Google Scholar 

  21. S. V. Valueva, A. V. Titova, and L. N. Borovikova, Russ. J. Phys. Chem. A 89, 1633 (2015).

    Article  Google Scholar 

  22. A. A. Litmanovich and I. M. Papisov, Polym. Sci., Ser. B 39, 41 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Valueva.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valueva, S.V., Vylegzhanina, M.E., Alekseeva, P.E. et al. Biologically Active Hybrid Nanosystems Based on Zero-Valent Selenium Nanoparticles, Biocompatible Polymers, and Polyelectrolitic Complex. Tech. Phys. 63, 1248–1253 (2018). https://doi.org/10.1134/S1063784218090232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090232

Keywords

Navigation