Skip to main content
Log in

Porous Silicon as a Nanomaterial for Disperse Transport Systems of Targeted Drug Delivery to the Inner Ear

  • DEVELOPMENT OF PROCESS TECHNOLOGIES, DIAGNOSTIC METHODS, AND FUNCTIONAL MATERIALS AND STRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The samples of porous silicon (por-Si) particles in three size ranges (60–80, 250–300, and 500–600 nm) are obtained by electrochemical anodic etching of single-crystal silicon in an electrolyte based on an HF solution, followed by a change in the modes of ultrasonic treatment and homogenization. A complex characterization of particles was carried out by scanning electron microscopy, photon cross-correlation spectroscopy, and X-ray photoelectron spectroscopy. In vitro biocompatibility models using unicellular organisms of infusoria Paramecium caudatum Keln are applied to demonstrate the low toxicity of the samples at concentrations used for intravenous administration. The systemic in vivo biodistribution was studied for the por-Si 60–80 nm sample using adult Wistar rats. Introduced nanoobjects are found in the liver and heart tissues without significant changes in shape or size and predominantly in the oxidized state. Possibilities of using por-Si samples as matrices for transporting pharmaceuticals with intravenous administration are studied by assessing the intensity of the ototropic effect of gentamicin. An objective audiologic method for studying the amplitude of otoacoustic emission revealed the largest otodepressive effect of gentamicin when submicrometer-sized por-Si particles (500–600 nm) was used as a disperse system for drug delivery. Thus, modifications of the conditions for the synthesis of por-Si nanoparticles are promising directions in obtaining physicochemical parameters of transport particles that are optimal for specific tasks of targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Examination, Processing, and Use of Nanoporous Drug Carriers in Medicine, Ed. by V. Ya. Shevchenko, O. I. Kiselev, and V. N. Sokolov (Khimizdat, St. Petersburg, 2015).

    Google Scholar 

  2. F. Fontana, M. A. Shahbazi, D. Liu, et al., Adv. Mater. 29, 1603239 (2017). doi 10.1002/adma.201603239

    Article  Google Scholar 

  3. M. Galagudza, D. Korolev, D. Sonin, et al., J. Manuf. Technol. Manage. 21, 930 (2010).

    Article  Google Scholar 

  4. Z. Liu, Yu. Li, W. Li, et al., Adv. Mater. 30, 1703393 (2017). doi 10.1002/adma.201703393

    Article  Google Scholar 

  5. Handbook of Porous Silicon, Ed. by L. Canham (Springer, 2014).

    Google Scholar 

  6. O. I. Ksenofontova, A. V. Vasin, V. V. Egorov, A. V. Bobyl’, F. Yu. Soldatenkov, E. I. Terukov, V. P. Ulin, N. V. Ulin, and O. I. Kiselev, Tech. Phys. 59, 66 (2014).

    Article  Google Scholar 

  7. Yu. M. Spivak, K. A. Bespalova, A. O. Belorus, et al., Biotekhnosfera, No. 3 (51), 69 (2017).

    Google Scholar 

  8. V. Stojanovic, F. Cunin, J. O. Durand, et al., J. Mater. Chem. B 4, 7050 (2016). doi 10.1039/C6TB01829G

    Article  Google Scholar 

  9. T. J. Barnes, L. J. Karyn, and C. A. Prestidge, Ther. Delivery 4, 811 (2013). doi 10.1039/C6TB01829G

    Article  Google Scholar 

  10. Yu. M. Spivak, A. O. Belorus, P. A. Somov, et al., J. Phys.: Conf. Ser. 643, 010222 (2015). doi 10.1088/1742-6596/643/1/012022

    Google Scholar 

  11. Yu. A. Polkovnikova, A. S. Lenshin, P. V. Seredin, and D. A. Minakov, Inorg. Mater. 53, 477 (2017).

    Article  Google Scholar 

  12. A. S. Lenshin, V. M. Kashkarov, Y. M. Spivak, and V. A. Moshnikov, Mater. Chem. Phys. 135, 293 (2012).

    Article  Google Scholar 

  13. A. S. Lenshin, V. M. Kashkarov, P. V. Seredin, Y. M. Spivak, and V. A. Moshnikov, Semiconductors 45, 1183 (2011).

    Article  ADS  Google Scholar 

  14. M. G. Lisachenko, E. A. Konstantinov, V. Yu. Timo-shenko, and P. K. Kashkarov, Semiconductors 36, 325 (2002).

    Article  ADS  Google Scholar 

  15. G. Korotcenkov and B. K. Cho, Crit. Rev. Solid State Mater. Sci. 35, 153 (2010). doi 10.1080/10408436.2010.495446

    Article  ADS  Google Scholar 

  16. A. M. Tinsley-Bown, L. T. Canham, M. Hollings, et al., Phys. Status Solidi A 182, 547 (2000).

    Article  ADS  Google Scholar 

  17. Yu. M. Spivak, S. V. Mjakin, V. A. Moshnikov, et al., J. Nanomater. 2016, 2629582 (2016). doi 10.1155/2016/2629582

  18. A. S. Len’shin, V. M. Kashkarov, P. V. Seredin, D. A. Minakov, and E. P. Domashevskaya, Tech. Phys. 60, 1096 (2015).

    Article  Google Scholar 

  19. E. B. Chubenko, S. V. Redko, A. I. Sherstnyov, V. A. Petrovich, D. A. Kotov, and V. P. Bondarenko, Semiconductors 50, 372 (2016).

    Article  ADS  Google Scholar 

  20. H. Liu, J. Hao, and K. S. Li, Acta Pharm. Sin. B 3, 86 (2013).

    Article  Google Scholar 

  21. N. El Kechai, F. Agnely, E. Mamelle, et al., Int. J. Pharm. 494, 83 (2015). doi 10.1016/j.ijpharm.2015.08.015

    Article  Google Scholar 

  22. Q. Liu, H. Li, Q. Xia, et al., Int. J. Nanomed. 10, 7073 (2015). doi 10.2147/IJN.S94543

    Google Scholar 

  23. J. Zou, I. Pyykko, and J. Hyttinen, J. Otol. 11, 165 (2016).

    Article  Google Scholar 

  24. A. O. Belorus, N. V. Permyakov, Yu. M. Spivak, and V. A. Moshnikov, RF Patent No. 167518, Byull. Izobret., No. 1 (2017).

  25. A. I. Pastukhov, A. O. Belorus, Ya. V. Bukina, et al., Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, Moscow, Russia, 2017, p. 1183. doi 10.1109/EIConRus.2017.7910770

  26. A. O. Belorus, K. Bespalova, and Yu. M. Spivak, Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, Russia, 2016, p. 22. doi 10.1109/EIConRusNW.2016.7448108

  27. S. Skoglund, T. A. Lowe, J. Hedberg, et al., Langmuir 29, 8882 (2013). doi 10.1021/la4012873

    Article  Google Scholar 

  28. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58, 377 (2016).

    Article  ADS  Google Scholar 

  29. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).

    Article  ADS  Google Scholar 

  30. A. S. Komolov, Y. M. Zhukov, E. F. Lazneva, et al., Mater. Des. 113, 319 (2017).

    Article  Google Scholar 

  31. V. A. Terekhova, L. P. Voronina, D. V. Gershkovich, et al., Biotest Systems for Ecological Monitoring: Guidelines on the Practical Use of Standard Test Cultures (Dobroe Slovo, Moscow, 2014).

    Google Scholar 

  32. A. A. Panevin and S. G. Zhuravskii, Bull. Exp. Biol. Med. 164, 362 (2018).

    Article  Google Scholar 

  33. A. S. Komolov, K. Schaumburg, P. J. Möller, and V. V. Monakhov, Appl. Surf. Sci. 142, 591 (1999).

    Article  ADS  Google Scholar 

  34. E. J. Anglin, L. Cheng, W. Freeman, and M. J. Sailor, Adv. Drug Delivery Rev. 60, 1266 (2008). doi 10.1016/j.addr.2008.03.017

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Science Park of the St. Petersburg State University “Physical Methods of Surface Investigation” and “Cultivation of Microorganisms” was used in the work. Samples of strains of cyanobacteria and infusoria are provided by the Resource Center “Cultivation of Microorganisms” of the Science Park of the St. Petersburg State University. The XPS data were interpreted with the support of the Russian Foundation for Basic Research, project no. 18-03-00020-a. The SEM part of the research was carried out within the framework of the State order of the Ministry of Education and Science of the Russian Federation, project no. 3.6288.2017/8.9 (BCh). The biological studies using experimental animals was performed within the framework of the State order of the Ministry of Health of the Russian Federation, project no. 115091630046. The photon cross-correlation spectroscopy measurements were performed with the support of the Russian Foundation for Basic Research, project no. 17-32-50004 mol_nr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Spivak.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, Y.M., Belorus, A.O., Panevin, A.A. et al. Porous Silicon as a Nanomaterial for Disperse Transport Systems of Targeted Drug Delivery to the Inner Ear. Tech. Phys. 63, 1352–1360 (2018). https://doi.org/10.1134/S1063784218090207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090207

Keywords

Navigation