Skip to main content
Log in

A Model of Intermittent Ballistic-Brownian Particle Transport and Its Asymptotic Approximation

  • PHYSICAL APPROACHES AND PROBLEMS OF DATA INTERPRETATION IN THE LIFE SCIENCES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A mean-field model of intermittent transport of particles, molecules or organelles is proposed. A particle may be in one of two phases: the first is a ballistic (active) phase, when the particle runs with constant velocity in some direction, and the second is a Brownian (passive) phase, when the particle diffuses freely. The particle can instantly change the phase of motion. The distribution of the duration of the passive phase (the free path distribution) is exponential, while that of the active phase is arbitrary. In the case that transitions between the phases are very frequent an approximation to the model is derived. An example is given which shows that the use of the exponential distribution of free paths, when it is actually non-exponential, may lead to significant errors in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. L. Ross, M. Y. Ali, and D. M. Warshaw, Curr. Opin. Cell Biol. 20, 41 (2008).

    Article  Google Scholar 

  2. O. Benichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev. Mod. Phys. 83, 81 (2011).

    Article  ADS  Google Scholar 

  3. G. M. Viswanathan, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge Univ. Press, 2011).

    Book  MATH  Google Scholar 

  4. D. A. Smith and R. M. Simmons, Biophys. J. 80, 45 (2001).

    Article  ADS  Google Scholar 

  5. A.-T. Dinh, T. Theofanous, and S. Mitragotri, Biophys. J. 89, 1574 (2005).

    Article  Google Scholar 

  6. D. Holcman, J. Stat. Phys. 127, 471 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Lagache, E. Dauty, and D. Holcman, Phys. Rev. E 79, 011921 (2009).

    Article  ADS  Google Scholar 

  8. F. Thiel, L. Schimansky-Geier, and I. M. Sokolov, Phys. Rev. E 86, 021117 (2012).

    Article  ADS  Google Scholar 

  9. P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135 (2013).

    Article  ADS  Google Scholar 

  10. P. C. Bressloff, Stochastic Processes in Cell Biology (Springer, 2014).

    Book  MATH  Google Scholar 

  11. M. J. Plank, M. Auger-Methe, and E. A. Codling, in Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, Ed. by M. A. Lewis, P. K. Maini, and S. V. Petrovskii (Springer, Berlin, 2013), pp. 33–52.

    MATH  Google Scholar 

  12. S. Balint, I. V. Vilanova, I. S. Alvarez, and M. Lakadamyali, Proc. Natl. Acad. Sci. U. S. A. 110, 3375 (2013).

    Article  ADS  Google Scholar 

  13. G. A. Breed, P. M. Severns, and A. M. Edwards, J. R. Soc., Interface 12, 20140927 (2014).

    Google Scholar 

  14. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971), Vol. 2.

    MATH  Google Scholar 

  15. S. M. Ross, Introduction to Probability Models (Elsevier, Amsterdam, 2007).

    Google Scholar 

  16. W. Alt, J. Math. Biol. 9, 147 (1980).

    Article  MathSciNet  Google Scholar 

  17. S. A. Rukolaine, Phys. A 450, 205 (2016).

    Article  MathSciNet  Google Scholar 

  18. P. C. Bressloff and J. M. Newby, Phys. Rev. E 83, 061139 (2011).

    Article  ADS  Google Scholar 

  19. T. Hillen, Eur. J. Appl. Math. 14, 613 (2003).

    Article  MathSciNet  Google Scholar 

  20. T. Hillen and K. J. Painter, in Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, Ed. by M. A. Lewis, P. K. Maini, and S. V. Petrovskii (Springer, Berlin, 2013), pp. 177–222.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00638-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rukolaine.

Additional information

1The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukolaine, S.A. A Model of Intermittent Ballistic-Brownian Particle Transport and Its Asymptotic Approximation. Tech. Phys. 63, 1262–1269 (2018). https://doi.org/10.1134/S1063784218090177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090177

Keywords

Navigation