Skip to main content
Log in

The Electron-Conformational Model of Ryanodine Receptors of the Heart Cell

  • PHYSICAL APPROACHES AND PROBLEMS OF DATA INTERPRETATION IN THE LIFE SCIENCES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The main ideas of an electron-conformational (EC) model of ligand-activated ryanodine channels (RyR) that reduces many degrees of freedom of this gigantic nanoscopic molecular complex to two so-called electron and conformational degrees of freedom are presented. In the toy model, the conformational potential or energy profile of the RyR channel represents two branches that describe the dependence of energy on the conformational coordinate (reaction coordinate) in the initial and ligand-activated states, respectively. A model extension that takes into account both the tetrameric structure of the RyR channel and additional (orthogonal) rotational conformational mode has been considered. The EC model has been demonstrated to give a biophysical basis to the traditional phenomenological model of Markov chains. To demonstrate the possibilities of the EC model, we refer to examples of model description of the dynamics of isolated RyR channels and clusters of RyR channels in release units of the heart cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. M. Bers, Nature 415, 198 (2002).

    Article  ADS  Google Scholar 

  2. S. Györke and C. Carnes, Pharmacol. Ther. 119, 340 (2008).

    Article  Google Scholar 

  3. W. Peng, H. Shen, J. Wu, W. Guo, X. Pan, R. Wang, S. R. Wayne Chen, and N. Yan, Science 354, 301 (2016). doi 10.1126/science.aah5324

    Google Scholar 

  4. E. Saftenku, A. J. Williams, and R. Sitsapesan, Biophys. J. 80, 2727 (2001).

    Article  Google Scholar 

  5. S. Mukherjee, N. Lowri Thomas, and A. J. Williams, J. Gen. Physiol. 140, 139 (2012).

    Article  Google Scholar 

  6. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, and V. S. Markhasin, Dokl. Biochem. Biophys 400, 32 (2005).

    Article  Google Scholar 

  7. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, and V. S. Markhasin, J. Phys: Conf. Ser. 21, 195 (2005).

    ADS  Google Scholar 

  8. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, P. Kohl, and V. S. Markhasin, Prog. Biophys. Mol. Biol. 90, 88 (2006).

    Article  Google Scholar 

  9. M. P. Philipiev, Candidate’s Dissertation in Mathematics and Physics (Ural State Univ., Yekaterinburg, 2007).

  10. A. S. Moskvin, A. M. Ryvkin, O. E. Solovyova, and V. S. Markhasin, JETP Lett. 93, 403 (2011).

    Article  ADS  Google Scholar 

  11. A. S. Moskvin, A. M. Ryvkin, O. E. Solovyova, and V. S. Markhasin, Dokl. Biol. Sci. 444, 162 (2012).

    Article  Google Scholar 

  12. A. M. Ryvkin, Candidate’s Dissertation in Mathematics and Physics (Pushchino, 2014).

  13. W. Bialek and R. F. Goldstein, Phys. Scr. 34, 273 (1986).

    Article  ADS  Google Scholar 

  14. W. G. Noid, J. Chem. Phys. 139, 090901 (2013).

    Article  ADS  Google Scholar 

  15. T. Ha-Duong, in Protein Conformational Dynamics, Ed. by K.-L. Han, X. Zhang, and M.-J. Yang (Springer, 2014), p. 157.

    Google Scholar 

  16. A. Rubin, Biophysics, Vol. 1: Theoretical Bophysics (Vysshaya Shkola, Moscow, 1987).

  17. D. J. Wales, J. Chem. Phys. 142, 130901 (2015).

    Article  ADS  Google Scholar 

  18. A. A. Rauscher, Z. Simon, G. J. Szöllösi, L. Gräf, I. Derenyi, and A. Malnasi-Csizmadia, FASEB J. 25, 2804 (2011).

    Article  Google Scholar 

  19. W. T. Coffey and Yu. P. Kalmykov, The Langevin Equation, 3rd ed. (World Scientific, 2012).

    Book  MATH  Google Scholar 

  20. A. Vaziri and M. B. Plenio, New J. Phys. 12, 085001 (2010).

    Article  ADS  Google Scholar 

  21. C. C. Chancey, S. A. George, and P. J. Marshall, J. Biol. Phys. 18, 307 (1992).

    Article  Google Scholar 

  22. R. Sitsapesan and A. J. Williams, J. Membr. Biol. 137, 215 (1994).

    Article  Google Scholar 

  23. R. Sitsapesan and A. J. Williams, J. Membr. Biol. 159, 179 (1997).

    Article  Google Scholar 

  24. H. Kermode, A. J. Williams, and R. Sitsapesan, Biophys. J. 74, 1296 (1998).

    Article  ADS  Google Scholar 

  25. B. Tencerova, A. Zahradnikova, J. Gaburjakova, and M. Gaburjakova, J. Gen. Physiol. 140, 93 (2012).

    Article  Google Scholar 

  26. A. S. Moskvin, B. I. Iaparov, A. M. Ryvkin, O. E. Solovyova, and V. S. Markhasin, JETP Lett. 102, 62 (2015).

    Article  ADS  Google Scholar 

  27. A. S. Moskvin, B. I. Iaparov, A. M. Ryvkin, and O. E. Solovyova, Biophysics 61, 614 (2016).

    Article  Google Scholar 

  28. A. M. Ryvkin, N. M. Zorin, A. S. Moskvin, O. E. Solovyova, and V. S. Markhasin, Biophysics 60, 946 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to M.P. Filip’ev, O.E. Solov’eva, A. M. Ryvkin, N. M. Zorin, and B. Ya. Yaparov for fruitful cooperation and to R. Sitsapesan, K. Witschas, A. Zahradnikova, and I. Zahradnik for useful discussions.

The study was supported by the Program 211 of the Government of the Russian Federation, agreement no. 02.A03.21.0006, and projects nos. 2277 and 5719 of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Additional information

Translated by E. Berezhnaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S. The Electron-Conformational Model of Ryanodine Receptors of the Heart Cell. Tech. Phys. 63, 1277–1287 (2018). https://doi.org/10.1134/S1063784218090128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090128

Keywords

Navigation