Skip to main content
Log in

Non-Hydrostatic Pressure-Induced Phase Transitions in Self-Assembled Diphenylalanine Microtubes

  • DEVELOPMENT OF PROCESS TECHNOLOGIES, DIAGNOSTIC METHODS, AND FUNCTIONAL MATERIALS AND STRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The structural phase transitions in diphenylalanine microtubes caused by an increase in the non-hydrostatic pressure have been examined. Raman scattering investigations have been carried out and the results obtained have been interpreted and analyzed. Spectral variations in the ranges of phenyl ring vibrations and high-frequency oscillations of NH and CH groups have been analyzed. Under pressures of up to 9.8 GPa, four spectral anomalies indicative of the occurrence of phase transitions have been observed. The transitions under pressures of 1.7 and 4 GPa are shown to be reversible. The transition at 5.7 GPa is accompanied by partial sample amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Adler-Abramovich and E. Gazit, Chem. Soc. Rev. 43, 6881 (2014).

    Article  Google Scholar 

  2. L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, G. Rosenman, and E. Gazit, Nat. Nanotechnol. 4, 849 (2009).

    Article  ADS  Google Scholar 

  3. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010).

    Article  Google Scholar 

  4. A. Esin, I. Baturin, A. Nikitin, T. Vasilev, F. Salehli, V. Shur, and A. Kholkin, Appl. Phys. Lett. 109, 142902 (2016).

    Article  ADS  Google Scholar 

  5. E. D. Bosne, A. Heredia, S. Kopyl, D. V. Karpinsky, A. G. Pinto, and A. L. Kholkin, Appl. Phys. Lett. 102, 073504 (2013).

    Article  ADS  Google Scholar 

  6. A. Nuraeva, S. Vasilev, D. Vasileva, P. Zelenovskiy, D. Chezganov, A. Esin, S. Kopyl, K. Romanyuk, V. Shur, and A. Kholkin, Cryst. Growth Des. 16, 1472 (2016).

    Article  Google Scholar 

  7. K. Ryan, J. Beirne, G. Redmond, J. I. Kilpatrick, J. Guyonnet, N.-V. Buchete, A. L. Kholkin, and B. J. Rodriguez, ACS Appl. Mater. Interfaces 7, 12702 (2015).

    Article  Google Scholar 

  8. P. S. Zelenovskiy, A. O. Davydov, A. S. Krylov, and A. L. Kholkin, J. Raman Spectrosc. 48, 1401 (2017).

    Article  ADS  Google Scholar 

  9. J. G. da Silva Filho, J. Mendes Filho, F. E. A. Melo, J. A. Lima, and P. T. C. Freire, Vib. Spectrosc. 92, 173 (2017).

    Article  Google Scholar 

  10. A. S. Krylov, S. V. Goryainov, N. M. Laptash, A. N. Vtyurin, S. V. Melnikova, and S. N. Krylova, Cryst. Growth Des. 14, 374 (2014).

    Article  Google Scholar 

  11. A. N. Vtyurin, A. S. Krylov, S. V. Goryainov, S. N. Krylova, A. S. Oreshonkov, and V. N. Voronov, Phys. Solid State 54, 934 (2012).

    Article  ADS  Google Scholar 

  12. A. N. Vtyurin, S. V. Goryalnov, N. G. Zamkova, V. I. Zinenko, A. S. Krylov, S. N. Krylova, Comput. Mater. Sci. 36, 79 (2006).

    Article  Google Scholar 

  13. I. K. Bdikin, V. Bystrov, S. Kopyl, R. Lopes, I. Delgadillo, J. Gracio, E. Mishina, A. Sigov, and A. L. Kholkin, Appl. Phys. Lett. 100, 043702 (2012).

    Article  ADS  Google Scholar 

  14. A. S. Krylov, I. Gudim, I. Nemtsev, S. N. Krylova, A. V. Shabanov, and A. A. Krylov, J. Raman Spectrosc. 48, 1406 (2017).

    Article  ADS  Google Scholar 

  15. A. Pugachev, I. Zaytseva, A. Krylov, V. Malinovsky, N. Surovtsev, Yu. Borzdov, and V. Kovalevsky, Ferroelectrics 508, 161 (2017).

    Article  Google Scholar 

  16. C. H. Görbitz, Chem. Commun., No. 22, 2332 (2006).

  17. X. Wu, S. Xiong, M. Wang, J. Shen, P. K. J. Chu, Phys. Chem. C 116, 9793 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Turkish–Portuguese project no. TUBITAK/0006/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krylov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, A., Krylova, S., Kopyl, S. et al. Non-Hydrostatic Pressure-Induced Phase Transitions in Self-Assembled Diphenylalanine Microtubes. Tech. Phys. 63, 1311–1315 (2018). https://doi.org/10.1134/S1063784218090098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090098

Keywords

Navigation