Skip to main content
Log in

Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field

  • PHYSICAL APPROACHES AND PROBLEMS OF DATA INTERPRETATION IN THE LIFE SCIENCES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The charge transfer in a Holstein molecular chain placed in a uniform electric field has been numerically simulated. It has been shown that for given parameters of the chain, a charge placed in a constant electric field may uniformly travel very large distances (several hundred thousand sites). The charge may move with a constant velocity if the field strength is low. With an increase in the field strength, the charge starts oscillating (Bloch oscillations). Good agreement has been shown between the theoretical and numerical field dependences of the charge constant velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. S. Davydov, J. Theor. Biol. 38, 559 (1973).

    Article  Google Scholar 

  2. A. S. Davydov, J. Theor. Biol. 66, 379 (1977).

    Article  Google Scholar 

  3. A. S. Davydov, Solitons in Molecular Systems (Reidel, Dordrect, 1985).

  4. A. C. Scott, Phys. Rep. 217, 1 (1992).

    Article  ADS  Google Scholar 

  5. V. D. Lakhno, Int. J. Quantum Chem. 108, 1970 (2008).

    Article  ADS  Google Scholar 

  6. Nanobioelectronics – for Electronics, Biology, and Medicine, Ed. by A. Offenhäusser and R. Rinaldi (Springer, 2009).

    Google Scholar 

  7. A. J. Storm, J. Van Noort, S. De Vries, and C. Dekker, Appl. Phys. Lett. 9, 3881 (2001).

    Article  ADS  Google Scholar 

  8. P. J. De Pablo et al., Phys. Rev. Lett. 85, 4992 (2000).

    Article  ADS  Google Scholar 

  9. H. W. Fink and C. Schönenberger, Nature 398, 407 (1999).

    Article  ADS  Google Scholar 

  10. Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, J. Am. Chem. Soc. 120, 6165 (1998).

    Article  Google Scholar 

  11. D. Porath, A. Bezryadin, S. De Vries, and C. Dekker, Nature 403, 635 (2000).

    Article  ADS  Google Scholar 

  12. L. Cai, H. Tabata, and T. Kavai, Appl. Phys. Lett. 77, 3105 (2000).

    Article  ADS  Google Scholar 

  13. K.-H. Yoo et al., Phys. Rev. Lett. 87, 198102 (2001).

    Article  ADS  Google Scholar 

  14. A. Y. Kasumov et al., Science 291, 280 (2001).

    Article  ADS  Google Scholar 

  15. A. Chepeliaskii et al., New J. Phys. 13, 063046 (2011).

    Article  ADS  Google Scholar 

  16. V. D. Lakhno, in Self-Organization of Molecular Systems – From Molecules and Clusters to Nanotubes and Proteins, Ed. by N. Russo, V. Ya. Antonchenko, and E. Kryachko (Springer, 2009), p. 255.

    Google Scholar 

  17. V. D. Lakhno, J. Biol. Phys. 26, 133 (2000).

    Article  Google Scholar 

  18. T. Holstein, Ann. Phys. 8, 343 (1959).

    Article  ADS  Google Scholar 

  19. V. D. Lakhno, Int. J. Quantum Chem. 110, 127 (2010).

    Article  ADS  Google Scholar 

  20. V. D. Lakhno and A. N. Korshunova, Eur. Phys. J. B 79, 147 (2011).

    Article  ADS  Google Scholar 

  21. A. N. Korshunova and V. D. Lakhno, Mat. Biol. Bioinf. 11 (2), 141 (2016).

    Article  Google Scholar 

  22. A. N. Korshunova and V. D. Lakhno, Mat. Biol. Bioinf. 12 (1), 204 (2017).

    Article  Google Scholar 

  23. A. A. Voityuk, N. Rösch, M. Bixon, and J. Jortner, J. Phys. Chem. B 104, 9740 (2000).

    Article  Google Scholar 

  24. J. Jortner, M. Bixon, A. A. Voityuk, and N. Rösch, J. Phys. Chem. B 106, 7599 (2002).

    Article  Google Scholar 

  25. V. D. Lakhno and A. N. Korshunova, Math. Biol. Bioinf. 5 (1), 1 (2010).

    Article  Google Scholar 

  26. V. D. Lakhno and A. N. Korshunova, Eur. Phys. J. B 55, 85 (2007).

    Article  ADS  Google Scholar 

  27. E. Diaz, R. P. A. Lima, and F. Dominguez-Adame, Phys. Rev. B 78, 134303 (2008).

    Article  ADS  Google Scholar 

  28. A. N. Korshunova and V. D. Lakhno, Phys. E 60, 206 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 16-07-00305) and the Russian Science Foundation (grant no. 16-11-10163).

This work was fulfilled using the computational power of the Joint Supercomputer Center of the Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Korshunova.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunova, A.N., Lakhno, V.D. Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field. Tech. Phys. 63, 1270–1276 (2018). https://doi.org/10.1134/S1063784218090086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090086

Keywords

Navigation