Skip to main content
Log in

Texturing in a Ni–W/TiN Thin-Film System

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Double-layer thin-film compositions with a TiN coating based on a ferromagnetic Ni–5 at % W alloy and a paramagnetic Ni–9.5 at % W alloy have been prepared. Texturing in both components of the Ni–W/TiN system has been studied using X-ray diffraction analysis. It has been found that the coating layer causes crystal planes in the Ni–9.5 at % W strip to reorient and thereby enhances the cube texture in the substrate. It has been shown that under certain growth conditions, a thin TiN coating above the Ni–9.5 at % W/TiN substrate grows quasi-single-crystalline with a cube texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Goyal, D. P. Norton, J. D. Budai, M. Paranthaman, E. D. Specht, and D. M. Kroeger, Appl. Phys. Lett. 69, 1795 (1996). doi https://doi.org/10.1063/1.117489

    Article  ADS  Google Scholar 

  2. B. Seeber, Power Applications of Superconductivity: Handbook of Applied Superconductivity (Inst. of Physics, Bristol, 1998), p. 1485–1756.

    Book  Google Scholar 

  3. A. P. Malozemoff and Y. Yamada, 100 Years of Superconductivity, Ed. by H. Rogalla and P. Kes (Taylor & Francis, New York, 2011), pp. 689–702.

  4. M. W. Rupich, X. Li, C. Thieme, S. Sathyamurthy, S. Fleshler, et al., Supercond. Sci. Technol. 23, 014015 (2010). doi https://doi.org/10.1088/0953-2048/23/1/014015

    Article  ADS  Google Scholar 

  5. U. Gaitzsch, J. Hanisch, R. Huhne, C. Rodig, J. Freudenberger, B. Holzapfel, and L. Schultz, Supercond. Sci. Technol. 26, 085024 (2013). doi https://doi.org/10.1088/0953-2048/26/8/085024

    Article  ADS  Google Scholar 

  6. U. Gaitzsch, J. Eickemeyer, Ch. Rodig, J. Freudenberger, B. Holzapfel, and L. Schultz, Scr. Mater. 62, 512 (2010). doi https://doi.org/10.1016/j.scriptamat.2009.12.030

    Article  Google Scholar 

  7. Y. Zhao, H.-L. Suo, M. Liu, D. He, Y.-X. Zhang, L. Ma, and M.-L. Zhou, Acta Mater. 55, 2609 (2007). doi https://doi.org/10.1016/j.actamat.2007.01.001

    Article  Google Scholar 

  8. V. Selvamanickam, Y. Chen, I. Kesgin, et al., IEEE Trans. Appl. Supercond. 21, 3049 (2011). doi https://doi.org/10.1109/TASC.2011.2107310

    Article  ADS  Google Scholar 

  9. E. Stewart, M. S. Bhuiyan, S. Sathyamurthy, and M. Paranthaman, Mater. Res. Bull. 41, 1063 (2006). doi https://doi.org/10.1016/j.materresbull.2005.11.015

    Article  Google Scholar 

  10. V. Mathias, E. J. Rowley, Y. Coulter, et al., Supercond. Sci. Technol. 23, 014018 (2010). doi https://doi.org/10.1088/0953-2048/23/1/014018

    Article  ADS  Google Scholar 

  11. R. Hühne, R. Gärtner, S. Oswald, L. Schultz, and B. Holzapfel, Phys. C 471, 966 (2011). doi https://doi.org/10.1016/j.physc.2011.05.101

    Article  ADS  Google Scholar 

  12. R. Hühne, S. Fähler, and B. Holzapfel, Appl. Phys. Lett. 85, 2744 (2004). doi https://doi.org/10.1063/1.1802385

    Article  ADS  Google Scholar 

  13. R. Hühne, K. Güth, M. Kidszun, R. Kaltofen, L. Schultz, and B. Holzapfel, J. Phys. D: Appl. Phys. 41, 245404 (2008). doi https://doi.org/10.1088/0022-3727/41/24/245404

    Article  ADS  Google Scholar 

  14. Y. Zhang, P. Yan, Z. Wu, and P. Zhang, Rare Met. 24, 370 (2005).

    Google Scholar 

  15. S. S. Akkaya, V. V. Vasyliev, E. N. Reshetnyak, K. Kazmanli, N. Solak, V. E. Strel’nitskij, and M. Urgen, Surf. Coat. Technol. 236, 332 (2013). doi https://doi.org/10.1016/j.surfcoat.2013.10.009

    Article  Google Scholar 

  16. J. Eickenmeier, R. Hühne, A. Guth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, and B. Holzapfelet, Supercond. Sci. Technol. 23, 085012 (2010). doi https://doi.org/10.1088/0953-2048/23/8/085012

    Article  ADS  Google Scholar 

  17. A. O. Ijodola, J. R. Thomson, A. Goyal, C. L. H. Thieme, and K. Marken, Phys. C 403, 163 (2004). doi https://doi.org/10.1016/j.physc.2003.12.003

    Article  ADS  Google Scholar 

  18. Y. A. Genenko, H. Rauh, and P. Kruger, Appl. Phys. Lett. 98, 152303 (2011). doi https://doi.org/10.1063/1.3560461

    Article  Google Scholar 

  19. V. Subramanya Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel, Scr. Mater. 50, 953 (2004). doi https://doi.org/10.1016/j.scriptamat.2004.01.004

    Article  Google Scholar 

  20. F. A. Mohamed and T. G. Langdon, Metall. Trans. A 6, 927 (1975).

    Article  Google Scholar 

  21. D. J. Siegel, Appl. Phys. Lett. 87, 121901 (2005). doi https://doi.org/10.1063/1.2051793

    Article  ADS  Google Scholar 

  22. V. A. Finkel, A. M. Bovda, S. A. Leonov, et al., Funct. Mater. 19, 109 (2012).

    Google Scholar 

  23. V. A. Finkel, V. V. Derevyanko, M. S. Sunhurov, T. V. Sukhareva, and Yu. N. Shahov, Funct. Mater. 20, 103 (2013). doi https://doi.org/10.15407/fm20.01.103

    Article  Google Scholar 

  24. M. S. Sungurov, V. V. Derevyanko, S. A. Leonov, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shakhov, Tech. Phys. Lett 40, 797 (2014). doi https://doi.org/10.1134/S1063785014090314

    Article  ADS  Google Scholar 

  25. M. S. Sunhurov, S. A. Leonov, T. V. Sukhareva, V. V. Derevyanko, V. A. Finkel, and Yu. N. Shakhov, Funct. Mater. 24, 063 (2017). doi https://doi.org/10.15407/fm24.01.063

    Article  Google Scholar 

  26. Y. Zhao, H. L. Suo, Y. Zhu, M. Liu, et al., Supercond. Sci. Technol. 21, 075003 (2008). doi https://doi.org/10.1088/0953-2048/21/7/075003

    Article  ADS  Google Scholar 

  27. V. A. Belous, V. V. Vasil’ev, A. A. Luchaninov, E. N. Reshetnyak, V. E. Strel’nitskii, G. N. Tolmacheva, V. S. Goltvyanitsa, and S. K. Goltvyanitsa, Fiz. Inzh. Poverkhnosti 7, 216 (2009).

    Google Scholar 

  28. I. Aksenov, A. N. Belokhvostikov, V. G. Padalka, et al., Plasma Phys. Controlled Fusion 28, 761 (1986). doi https://doi.org/10.1088/0741-3335/28/5/002

    Article  ADS  Google Scholar 

  29. F. R. Aliaj, N. Syla, H. Oettel, and T. Dilo, Surf. Interface Anal. 49, 1135 (2017). doi https://doi.org/10.1002/sia.6292

    Article  Google Scholar 

  30. M. M. Borodkina and E. N. Spektor, X-Ray Analysis of Texture of Metals and Alloys (Metallurgiya, Moscow, 1981).

    Google Scholar 

  31. D. J. Hudson, Lectures on Elementary Statistics and Probability (CERN, Geneva, 1963).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sungurov.

Additional information

Original Russian Text © M.S. Sungurov, V.A. Finkel’, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1216–1223.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sungurov, M.S., Finkel’, V.A. Texturing in a Ni–W/TiN Thin-Film System. Tech. Phys. 63, 1182–1188 (2018). https://doi.org/10.1134/S1063784218080200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080200

Navigation