Skip to main content
Log in

Discharge Characteristics of the Penning Plasma Source

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of investigation of discharge characteristics of the Penning plasma source are presented. Volt-ampere characteristics (VAC), energy distribution, and mass-charge composition of ions emitted from the discharge under different modes of its combustion were measured. The connection between the discharge current bursts and increase in the potential drop (up to 50% of the anode voltage) is established. The measured VACs agree well with the theoretical dependencies. It is shown that the content of atomic hydrogen ions increases from 5 to 10% with an increase in the anode voltage from 1 to 3.5 kV and the power applied in the discharge (from 0.2 to 3 W).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Cherenshchykov, Vacuum 73, 285 (2004). doi https://doi.org/10.1016/j.vacuum.2003.12.003

    Article  ADS  Google Scholar 

  2. D. L. Hillis, P. D. Morgan, J. K. Ehrenberg, M. Groth, M. F. Stamp, M. Von Hellermann, and V. Kumar, Rev. Sci. Instrum. 70, 359 (1999).

    Article  ADS  Google Scholar 

  3. A. Sy, Q. Ji, A. Persaud, O. Waldmann, and T. Schenkel, Rev. Sci. Instrum. 83, 02B309 (2012).

    Article  Google Scholar 

  4. B. K. Das, A. Shyam, R. Das, and A. D. P. Rao, Instrum. Exp. Tech. 56, 130 (2013).

    Article  Google Scholar 

  5. F. Yan, D. Jin, L. Chen, and X. Wan, Proc. Vacuum Electronic Conf., Beijing, China, 2015. doi https://doi.org/10.1109/IVEC.2015.7223900

    Google Scholar 

  6. A. Samokhin, A. Gavrikov, G. Liziakin, R. Usmanov, and V. Smirnov, Plasma Fusion Res. 1, 1401115 (2016).

    Google Scholar 

  7. R. Prakash et al., Rev. Sci. Instrum. 83, 123502 (2012).

    Article  ADS  Google Scholar 

  8. B. K. Das et al., Nucl. Instrum. Methods Phys. Res., Sect. A 669, 19 (2012).

    Article  ADS  Google Scholar 

  9. B. Ludewight et al., Proc. 2nd Int. Workshop on Fast Neutron Detectors and Applications, Ein Gedi, Israel, 2011.

    Google Scholar 

  10. W. Liu et al., Nucl. Instrum. Methods Phys. Res., Sect. A 768, 120 (2014).

    Article  ADS  Google Scholar 

  11. J. L. Rovey, B. P. Ruzic, and T. J. Houlahan, Rev. Sci. Instrum. 78, 106101 (2007).

    Article  ADS  Google Scholar 

  12. S. N. Abolmasov and S. Samukawa, Rev. Sci. Instrum. 78, 073302 (2007).

    Article  ADS  Google Scholar 

  13. R. P. Babertsyan, G. A. Egiazaryan, and E. I. Ter-Gevorkyan, Zh. Tekh. Fiz. 64 (10), 202 (1994).

    Google Scholar 

  14. R. P. Babertsyan, E. S. Badalyan, et al., Zh. Tekh. Fiz. 66 (6), 77 (1996).

    Google Scholar 

  15. R. P. Babertsyan, E. S. Badalyan, G. A. Egiazaryan, E. I. Ter-Gevorkyan, and V. N. Ogannisyan, Tech. Phys. 45, 406 (2000).

    Article  Google Scholar 

  16. G. A. Egiazaryan, Zh. B. Khachatryan, E. S. Badalyan, E. I. Ter-Gevorgyan, and V. N. Hovhannisyan, Tech. Phys. 51, 209 (2006).

    Article  Google Scholar 

  17. R. P. Babertsyan, E. S. Badalyan, G. A. Egiazaryan, and E. I. Ter-Gevorkyan, Tech. Phys. 43, 1035 (1998).

    Article  Google Scholar 

  18. B. K. Das and A. Shyam, Rev. Sci. Instrum. 79, 123305 (2008). doi https://doi.org/10.1063/1.3054268

    Article  ADS  Google Scholar 

  19. N. Mamedov, N. Schitov, and I. Kanshin, Instrum. Exp. Tech. 59, 868 (2016).

    Article  Google Scholar 

  20. N. V. Mamedov, D. V. Kolodko, I. A. Sorokin, I. A. Kanshin, and D. N. Sinelnikov, J. Phys. Conf. Ser. 830, 012063 (2017).

    Article  Google Scholar 

  21. G. Liziakin, A. Gavrikov, Y. A. Murzaev, R. Usmanov, and V. Smirnov, Phys. Plasmas 23, 123502 (2016).

    Article  ADS  Google Scholar 

  22. E. M. Oks, M. V. Shandrikov, and A. V. Vizir, Rev. Sci. Instrum. 87, 02B703 (2016).

    Article  Google Scholar 

  23. S. T. Surzhikov, J. Phys. Conf. Ser. 815, 012004 (2017).

    Article  Google Scholar 

  24. S. T. Surzhikov, Dokl. Phys. 61, 596 (2016).

    Article  ADS  Google Scholar 

  25. A. S. Dikalyuk and S. E. Kuratov, J. Phys. Conf. Ser. 815, 012001 (2017).

    Article  Google Scholar 

  26. P. Rohwer, H. Baumann, W. Schutze, and K. Bethge, Nucl. Instrum. Methods Phys. Res. 211, 543 (1983).

    Article  ADS  Google Scholar 

  27. W. Schuurman, Phys. A 36, 136 (1967).

    ADS  Google Scholar 

  28. E. B. Hooper, Jr., Adv. Electron. Electron Phys. 27, 295 (1970).

    Article  Google Scholar 

  29. E. M. Reikhrudel’, G. V. Smirnitskaya, and Nguyen Huu Thi, Zh. Tekh. Fiz. 39, 1052 (1969).

    Google Scholar 

  30. G. V. Smirnitskaya and Nguyen Huu Thi, Zh. Tekh. Fiz. 39, 1044 (1969).

    Google Scholar 

  31. N. N. Shchitov, I. A. Kan’shin, and N. V. Mamedov, Fiz.-Khim. Kinet. Gazov. Din. 16 (4), 2 (2015).

    Google Scholar 

  32. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Mamedov.

Additional information

Original Russian Text © N.V. Mamedov, N.N. Shchitov, D.V. Kolodko, I.A. Sorokin, D.N. Sinel’nikov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1164–1171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, N.V., Shchitov, N.N., Kolodko, D.V. et al. Discharge Characteristics of the Penning Plasma Source. Tech. Phys. 63, 1129–1136 (2018). https://doi.org/10.1134/S1063784218080121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080121

Navigation