Skip to main content

Mathematical Modeling of Linear Docking. I. Determination of Regions of Binding of Protein Molecules

Abstract

We report on the results of mathematical simulation of the interaction of various sequences of proteins Mdm2, P53, and Nap1 in accordance with the developed algorithms that were used for identifying the region of binding of various proteins during the formation of biological complexes P53–Mdm2, Mdm2–Mdm2, and Nap1–Nap1. The approach developed in this work will make it possible to determine active regions of binding of polypeptide chains of various proteins and to choose and synthesize highly selective peptides that will be bound in the active center of a protein and will lead to its activation or inhibition and blocking of its biological functions.

This is a preview of subscription content, access via your institution.

References

  1. Computational Systems Biology, Ed. by N. A. Kolchanov, S. S. Goncharov, V. A. Likhoshvai, and V. A. Ivanisenko (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2008).

    Google Scholar 

  2. M. J. Betts and M. J. Sternberg, Protein Eng. 12, 271 (1999).

    Article  Google Scholar 

  3. T. V. Pyrkov, I. V. Ozerov, E. D. Balitskaya, and R. G. Efremov, Russ. J. Bioorg. Chem. 36, 446 (2010).

    Article  Google Scholar 

  4. https://doi.org/www.uniprot.org/.

  5. T. Soussi, EMBO Rep. II, 822 (2010).

    Article  Google Scholar 

  6. Q. Yingjuan and C. Xinbin, Methods Mol. Biol. 965, 37 (2013).

    Article  Google Scholar 

  7. G. P. Zambetti, The P53 Tumor Suppressor Pathway and Cancer (Springer, 2005).

    Book  Google Scholar 

  8. Y. Yin, G. Solomon, C. Deng, and J. C. Barrett, Mol. Carcinog. 24, 15 (1999).

    Article  Google Scholar 

  9. J. J. Manfredi, Genes Dev. 24, 1580 (2010).

    Article  Google Scholar 

  10. Y. J. Park and K. Luger, Proc. Natl. Acad. Sci. U. S. A. 103, 1248 (2006).

    ADS  Article  Google Scholar 

  11. P. L. Leslie, H. Ke, and Y. Zhang, J. Biol. Chem. 290, 12941 (2015).

    Article  Google Scholar 

  12. J. Loughery and D. Meek, BioDiscovery 8, 1 (2013).

    Google Scholar 

  13. D. A. Freedman and A. J. Levine, Mol. Cell. Biol. 18, 7288 (1998).

    Article  Google Scholar 

  14. D. Shi and W. Gu, Genes Cancer 3, 240 (2012).

    Article  Google Scholar 

  15. S. R. Grossman, M. Perez, A. L. Kung, M. Joseph, C. Mansur, Z.-X. Xiao, S. Kumar, P. M. Howley, and D. M. Livingston, Mol. Cell 2, 405 (1998).

    Article  Google Scholar 

  16. U. M. Moll and O. Petrenko, Mol. Cancer. Res. l, 1001 (2003).

    Google Scholar 

  17. S. Golestanian, A. Sharifi, G. M. Popowicz, H. Azizian, A. Foroumadi, A. Szwagierczak, T. A. Holak, and M. Amanlou, Life Sci. 145, 240 (2016).

    Article  Google Scholar 

  18. M. V. Poyurovsky, A. Kentsis, K. L. Borden, Z. Q. Pan, N. Pavletich, and C. Prives, EMBO J. 26, 90 (2007).

    Article  Google Scholar 

  19. J. Zlatanova, C. Seebart, and M. Tomschik, FASEB J. 21, 1294 (2007).

    Article  Google Scholar 

  20. C. Jiandong, Transl. Cancer Res. 5, 639 (2016).

    Article  Google Scholar 

  21. A. Fenley, D. A. Adams, and A. V. Onufriev, Biophys. J. 99, 1577 (2010).

    ADS  Article  Google Scholar 

  22. Yu. D. Semchikov, High-Molecular Compounds (Akademiya, Moscow, 2010).

    Google Scholar 

  23. M. Gerstein and F. M. Richards, Protein Geometry: Volumes, Areas, and Distances (Yale Univ., 1977).

    Google Scholar 

  24. J. C. Biro, Theor. Biol. Med. Modell. 3 (15), 1 (2006).

    Google Scholar 

  25. A. B. Almazov, Probabilistic Methods in the Theory of Polymers (Nauka, Moscow, 1971).

    Google Scholar 

  26. Ya. I. Ryskin, Hydrogen Bond and Structure of Hydrosilicates (Nauka, Leningrad, 1972).

    Google Scholar 

  27. K. G. Kulikov and T. V. Koshlan, Tech. Phys. 61, 1572 (2001).

    Article  Google Scholar 

  28. V. A. Saranin, Phys.-Usp. 42, 385 (1999).

    ADS  Article  Google Scholar 

  29. B. A. Saranin, Phys.-Usp. 45, 1287 (2002).

    ADS  Article  Google Scholar 

  30. V. A. Saranin and V. V. Mayer, Phys.-Usp. 53, 1067 (2010).

    ADS  Article  Google Scholar 

  31. W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, 1950).

    MATH  Google Scholar 

  32. E. A. Shcherba, A. I. Grigor’ev, and V. A. Koromyslov, Tech. Phys. 47, 13 (2002).

    Article  Google Scholar 

  33. V. M. Verzhbitskii, Computational Linear Algebra (Vysshaya Shkola, Moscow, 2009).

    Google Scholar 

  34. E. Z. Demidenko, Linear and Nonlinear Regression (Finansy i Statistika, Moscow, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Kulikov.

Additional information

Original Russian Text © K.G. Kulikov, T.V. Koshlan, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1137–1149.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulikov, K.G., Koshlan, T.V. Mathematical Modeling of Linear Docking. I. Determination of Regions of Binding of Protein Molecules. Tech. Phys. 63, 1101–1114 (2018). https://doi.org/10.1134/S1063784218080108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080108