Skip to main content
Log in

Cascade Transformer Based on the Volume Coil for Power Transmission under High Voltage

  • Electrophysics, Electron and Ion Beams, Physics of Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The use of an electronic cooling system at the High Intensity heavy ion Accelerator Facility (HIAF) accelerator complex, which is being developed at the Institute of Modern Physics (China), to improve the efficiency of ion injection into the accelerator and reduce the spread of ion pulses in the beam has been proposed. Electron cooling of the ion beam was carried out due to the interaction of ions with a continuous electron beam with a current of up to 3 A, energy of up to 450 keV, and energy stability at the level of 10–4 or better. The electron beam energy recuperation was carried out at the expense of a power source with a power of 5–15 kW, which was located at the top of a high-voltage column—a high-voltage terminal. The operation of a prototype of power transmission system, which was based on a cascade transformer with a volumetric coil, has been considered. Such a transformer has a relatively low scattering inductance, which can significantly reduce the number of capacitors to compensate for it. It has been shown that this design made it possible to transfer power of up to 40 kW at small dimensions of the transformer and heat dissipation in it was not more than 10 kW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai, L. N. Sheng, G. D. Shen, H. Zhao, and M. T. Tang, Nucl. Instrum. Methods Phys. Res., Sect. A 786, 91 (2015).

    Article  ADS  Google Scholar 

  2. V. V. Parkhomchuk and A. N. Skrinskii, Phys.-Usp. 43, 433 (2000).

    Article  ADS  Google Scholar 

  3. E. I. Antokhin, V. N. Bocharov, A. V. Bublei, A. D. Goncharov, B. I. Grishanov, E. S. Konstantinov, S. G. Konstantinov, G. S. Krainov, A. M. Kudryavtsev, N. K. Kuksanov, G. M. Kuznetsov, P. V. Logatchov, D. G. Myakishev, P. I. Nemytov, V. M. Panasyuk, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 441, 87 (2009).

    Article  ADS  Google Scholar 

  4. V. Parkhomchuk, V. Bocharov, M. Brizgunov, A. Bubley, Yu. Evtuchenko, A. Goncharov, A. Ivanov, V. Kokoulin, V. Kolmogorov, M. Kondaurov, S. Konstantinov, V. Kozak, G. Krainov, A. Kruchkov, E. Kuper, et al., AIP Conf. Proc. 821, 334 (2006). doi https://doi.org/10.1063/1.2190130

    Article  ADS  Google Scholar 

  5. V. Bocharov, A. Bubley, Yu. Boimelstein, V. Veremeenko, V. Voskoboinikov, A. Goncharov, V. Grishanov, A. Dranichnikov, Yu. Evtushenko, N. Zapiatkin, M. Zakhvatkin, A. Ivanov, V. Kokoulin, V. Kolmogorov, M. Kondaurov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 532, 144 (2004).

    Article  ADS  Google Scholar 

  6. V. N. Bocharov, A. V. Bubley, Yu. M. Boimelstein, V. F. Veremeenko, R. V. Voskoboinikov, A. D. Goncharov, B. I. Grishanov, A. N. Dranichnikov, Yu. A. Evtushenko, N. P. Zapiatkin, M. N. Zakhvatkin, A. V. Ivanov, V. I. Kokoulin, V. V. Kolmogorov, M. N. Kondaurov, et al., Proc. 18th Russian Conf. On Charged Particle Accelerators, Obninsk, Russia, 2002, Vol. 2, p. 699.

    Google Scholar 

  7. Yu. D. Valyaev, I. V. Kazarezov, V. I. Kuznetsov, and V. P. Ostanin, Preprint 89–160 (Budker Inst. of Nuclear Physics, Novosibirsk, 1989).

    Google Scholar 

  8. V. M. Veremeenko, R. V. Voskoboynikov, and A. D. Goncharov, Proc. 20th Russian Conf. On Charged Particle Accelerators, Novosibirsk, Russia, 2006, p. 97.

    Google Scholar 

  9. E. Behtenev, V. Bocharov, and V. Bubley, Proc. 19th Russian Conf. On Charged Particle Accelerators, Dubna, Russia, 2004, p. 506.

    Google Scholar 

  10. R. A. Salimov, Phys.-Usp. 43, 189 (2000).

    Article  ADS  Google Scholar 

  11. M. I. Bryzgunov, A. D. Goncharov, V. M. Panasyuk, V. V. Parkhomchuk, V. B. Reva, and D. N. Skorobogatov, Instrum. Exp. Tech. 58, 181 (2015).

    Article  Google Scholar 

  12. G. Kazakevich, A. Burov, and C. Boffo, Preprint FERMILAB-TM-2319-AD (Fermi National Accelerator Laboratory, 2005). doi https://doi.org/10.2172/15020252

    Google Scholar 

  13. A. Hofmann, K. Aulenbacher, M.-W. Bruker, J. Dietrich, S. Friederich, and T. Weilbach, Proc. Int. Workshop on Beam Cooling and Related Topics, Murren, Switzerland, 2013, p. 107.

    Google Scholar 

  14. N. I. Alinovsky, A. D. Goncharov, V. F. Klyuev, S. G. Konstantinov, E. S. Konstantinov, A. M. Kryuchkov, V. V. Parkhomchuk, M. V. Petrichenkov, S. A. Rastigeev, and V. B. Reva, Tech. Phys. 54, 1350 (2009).

    Article  Google Scholar 

  15. L. Reginato, Proc. IEEE Particle Accelerator Conf., San Francisco, United States, 1991, p. 2918.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Denisov.

Additional information

Original Russian Text © A.P. Denisov, V.V. Parkhomchuk, V.B. Reva, A.A. Put’makov, J. Li, L.J. Mao, M.T. Tang, H. Zhao, X.M. Ma, X.D. Yang, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1248–1258.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, A.P., Parkhomchuk, V.V., Reva, V.B. et al. Cascade Transformer Based on the Volume Coil for Power Transmission under High Voltage. Tech. Phys. 63, 1212–1222 (2018). https://doi.org/10.1134/S1063784218080042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080042

Navigation