Skip to main content
Log in

To the Theory of Inhomogeneous Electron Gas

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Nonrigorous character of the density-functional theory for inhomogeneous electron gas based on the hypothesis assuming the existence of a universal density functional is demonstrated. A single-particle density matrix must be determined to calculate the ground-state energy of a finite system with a finite number of electrons. A single-particle Green function can be used to unambiguously determine the ground-state energy of an inhomogeneous electron system that satisfies the thermodynamic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics (Cambridge Univ. Press, New York, 2010).

    MATH  Google Scholar 

  2. E. G. Maksimov and A. E. Karakozov, Phys.-Usp. 51, 535 (2008).

    Article  ADS  Google Scholar 

  3. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  Google Scholar 

  4. Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. H. March (Plenum, New York, 1983).

    Google Scholar 

  5. H. Eschrig, The Fundamentals of Density Functional Theory (Tueubner, Stuttgart, 1996).

    Book  MATH  Google Scholar 

  6. A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).

    Article  Google Scholar 

  7. V. B. Bobrov, S. A. Trigger, and Yu. P. Vlasov, Europhys. Lett. 98, 53002 (2012).

    Article  ADS  Google Scholar 

  8. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  9. V. B. Bobrov and S. A. Trigger, Bull. Lebedev Phys. Inst. 45, 127 (2018).

    Article  ADS  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974).

    MATH  Google Scholar 

  11. V. B. Bobrov and S. A. Trigger, J. Exp. Theor. Phys. 116, 635 (2013).

    Article  ADS  Google Scholar 

  12. V. B. Bobrov, S. A. Trigger, and Yu. P. Vlasov, Phys. Rev. A 83, 034501 (2011).

    Article  ADS  Google Scholar 

  13. D. A. Kirzhnits, Field Methods of Many-Particle Theory (Nauka, Moscow, 1963).

    Google Scholar 

  14. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  15. M. Ya. Amusia, A. Z. Msezane, V. R. Shaginyan, and D. Sokolovski, Phys. Lett. A 330, 10 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. M. Sarry and M. F. Sarry, Phys. Solid State 54, 1315 (2012).

    Article  ADS  Google Scholar 

  17. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971).

    Google Scholar 

  18. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, The Methods of Quantum Field Theory in Statistical Physics (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1962).

    Google Scholar 

  19. V. B. Bobrov, S. A. Trigger, and A. Zagorodny, Phys. Rev. A 82, 044105 (2010).

    Article  ADS  Google Scholar 

  20. V. B. Bobrov, S. A. Trigger, G. J. F. van Heijst, and P. P. J. M. Schram, Phys. Rev. E 82, 010102(R) (2010).

    Article  ADS  Google Scholar 

  21. N. D. Mermin, Phys. Rev. 137, A1441 (1965).

    Article  ADS  Google Scholar 

  22. A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  23. G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

    Article  ADS  Google Scholar 

  24. P. E. Blöchl, T. Pruschke, and M. Potthoff, Phys. Rev. B 88, 205139 (2013).

    Article  ADS  Google Scholar 

  25. V. M. Galitskii and A. B. Migdal, J. Exp. Theor. Phys. 7, 96 (1958).

    Google Scholar 

  26. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys.-Usp. 55, 325 (2012).

    Article  ADS  Google Scholar 

  27. R. W. Godby and P. Garsia-Gonzalez, in A Primer in Density Functional Theory, Ed. by C. Fiolhais, F. Nogueira, and M. A. L. Marques (Springer, Heidelberg, 2003), p. 185.

  28. S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. B 78, 201103(R) (2008).

    Article  ADS  Google Scholar 

  29. K. Pernal, Phys. Rev. A 81, 052511 (2010).

    Article  ADS  Google Scholar 

  30. N. N. Lathiotakis, N. I. Gidopoulos, and N. Helbig, J. Chem. Phys. 132, 084105 (2010).

    Article  ADS  Google Scholar 

  31. A. R. Welden, A. A. Rusakov, and D. Zgid, J. Chem. Phys. 145, 204106 (2016).

    Article  ADS  Google Scholar 

  32. T. N. Lan, A. A. Kananenka, and D. Zgid, J. Chem. Theory Comput. 12, 4856 (2016).

    Article  Google Scholar 

  33. E. Gull and D. Zgid, New J. Phys. 19, 023047 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Bobrov.

Additional information

Original Russian Text © V.B. Bobrov, S.A. Trigger, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 8, pp. 1128–1136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrov, V.B., Trigger, S.A. To the Theory of Inhomogeneous Electron Gas. Tech. Phys. 63, 1092–1100 (2018). https://doi.org/10.1134/S1063784218080030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218080030

Navigation