Skip to main content
Log in

On the Hydrothermodynamics of the Icing of a Wing Profile in the Air-Crystalline Flow

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An experimental and theoretical complex was created to study the physical processes accompanying the interaction of the air flow carrying ice crystals with the heated surface of the streamlined body. An effective coefficient of phase transformations (evaporation and transition—through melting and solidifying in a liquid film—into barrier ice) of the mass of crystals bombarding a dry or moistened heated surface taking into account their partial entrainment with flowing air has been found. The physical and mathematical model of hydrothermodynamics of a liquid film is developed, the numerical data for the thickness, velocity, and temperature, complementing the results of the experiment, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Messinger, J. Aeronaut. Sci. 20, 29 (1953). doi 10.2514/8.2520

    Article  Google Scholar 

  2. R. Kh. Tenishev, B. A. Stroganov, V. S. Savin, V. K. Kordinov, A. I. Teslenko, and V. N. Leont’ev, Anti-Icing Systems of Aircraft (Mashinostroenie, Moscow, 1967).

    Google Scholar 

  3. A. L. Stasenko, A. I. Tolstykh, and D. A. Shirobokov, Fluid Dyn. 37, 825 (2002). doi 10.1023/A:1021340923791

    Article  Google Scholar 

  4. T. G. Myers, J. P. F. Charpin, and S. J. Chapman, Phys. Fluids 14, 2788 (2002). doi 10.1063/1.1416186

    Article  MathSciNet  ADS  Google Scholar 

  5. J. G. Mason, J. W. Strapp, and P. Chow, in Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006. doi 10.2514/6.2006-206

    Google Scholar 

  6. S. Nilamdeen and W. G. Habashi, J. Propul. Power 27, 959 (2011). doi 10.2514/1.834059

    Article  Google Scholar 

  7. I. V. Roisman and C. Tropea, Proc. R. Soc. A 471, 20150525 (2015). doi 10.1098/rspa.2015.0525

    Article  ADS  Google Scholar 

  8. J. Löwe, D. Kintea, A. Baumert, S. Bansmer, and I. V. Roisman, J. Phys.: Conf. Ser. 745, 032013 (2016).

    Google Scholar 

  9. P. L. Kapitsa, Zh. Eksp. Teor. Fiz. 18 (1), 3 (1948).

    ADS  Google Scholar 

  10. M. E. Deich and G. A. Filippov, Gas Dynamics of Two-Phase Media (Energoizdat, Moscow, 1981).

    Google Scholar 

  11. A. V. Kashevarov and A. L. Stasenko, J. Appl. Mech. Tech. Phys. 58, 275 (2017). doi 10.1134/S0021894417020110

    Article  MathSciNet  ADS  Google Scholar 

  12. A. B. Miller, Yu. F. Potapov, and A. L. Stasenko, in Proc. 29th Congress of the Int. Council of the Aeronautical Sciences, St. Petersburg, Russia, 2014, p. 2014_0576.

    Google Scholar 

  13. L. G. Loitsyanskii, Fluid and Gas Mechanics (Nauka, Moscow, 1979).

    Google Scholar 

  14. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1974).

    MATH  Google Scholar 

  15. A. A. Zhukauskas, Convective Transfer in Heat Exchangers (Nauka, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kashevarov.

Additional information

Original Russian Text © A.V. Kashevarov, V.S. Levchenko, A.B. Miller, Yu.F. Potapov, A.L. Stasenko, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 808–814.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashevarov, A.V., Levchenko, V.S., Miller, A.B. et al. On the Hydrothermodynamics of the Icing of a Wing Profile in the Air-Crystalline Flow. Tech. Phys. 63, 782–788 (2018). https://doi.org/10.1134/S1063784218060142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060142

Navigation