Skip to main content
Log in

Radiation-Induced Electrical Conductivity of Nanocomposite Materials

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The radiation-induced conductivity of a nanocomposite with the inclusion of spherical nanoparticles as a function of intensity and time of action of gamma-radiation and the concentration and size of inclusions has been studied using the Rose–Fowler–Weisberg model. The energy spectrum of localized states associated with the nanoparticle inclusion has been determined. The numerical experiments have been made for polymethyl methacrylate (PMMA) nanocomposites with inclusion of CdS and α-Al2O3 nanoparticles as well as SrO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Yu. S. Zavorotnyi, and S. M. Howdle, Green Chem. 13, 2696 (2011).

    Article  Google Scholar 

  2. N. Tomczak, D. Janczewski, M. Han, and G. J. Vancso, Prog. Polym. Sci. 34, 393 (2009).

    Article  Google Scholar 

  3. G. E. Davidyuk, V. V. Bozhko, G. L. Mironchuk, L. V. Bulatetskaya, and A. G. Kevshin, Semiconductors 42, 389 (2008).

    Article  ADS  Google Scholar 

  4. R. H. Bube, Photoconductivity of Solids (Wiley, New York, 1960).

    MATH  Google Scholar 

  5. A. Rose, Concepts in Photoconductivity and Allied Problems (Wiley, New York, 1963).

    Google Scholar 

  6. G. M. Sessler, Electrets (Springer, 1980).

    Book  Google Scholar 

  7. A. V. Vannikov, V. K. Matveev, V. P. Sichkar’, and A. P. Tyutnev, Radiation Effects in Polymers. Electric Properties (Nauka, Moscow, 1982).

    Google Scholar 

  8. V. S. Kortov, I. I. Mil’man, and S. V. Nikiforov, Izv. Tomsk. Politekh. Inst. 303 (2), 35 (2000).

    Google Scholar 

  9. I. I. Mil’man, V. S. Kortov, and V. I. Kirpa, Fiz. Tverd. Tela 37, 1149 (1995).

    Google Scholar 

  10. S. V. Nikiforov, V. S. Kortov, and M. G. Kazantseva, Phys. Solid State 56, 554 (2014).

    Article  ADS  Google Scholar 

  11. S. V. Nikiforov and V. S. Kortov, Phys. Solid State 56, 2064 (2014).

    Article  Google Scholar 

  12. A. P. Tyutnev, A. V. Vannikov, and G. S. Mingaleev, Radiation Electrophysics of Organic Dielectrics (Energoatomizdat, Moscow, 1989).

    Google Scholar 

  13. A. P. Tyutnev, D. N. Sadovnichii, and S. G. Boev, Khim. Vys. Energ. 29 (2), 115 (1995).

    Google Scholar 

  14. A. P. Tyutnev, V. S. Saenko, E. D. Pozhidaev, and R. Ikhsanov, IEEE Trans. Plasma Sci. 43, 2915 (2015).

    Article  ADS  Google Scholar 

  15. S. E. Vaisberg, V. P. Sichkar’, and V. L. Karpov, Vysokomol. Soedin., Ser. A 13, 2502 (1971).

    Google Scholar 

  16. V. P. Kovalev, Secondary Electrons (Energoatomizdat, Moscow, 1987).

    Google Scholar 

  17. B. A. Kononov, Yu. M. Stepanov, and A. P. Yalovets, Sov. At. Energy 42, 363 (1977).

    Article  Google Scholar 

  18. H. Ferdinande, G. Knuyt, R. van de Vijver, and R. Jacobs, Nucl. Instrum. Methods 91, 135 (1971).

    Article  ADS  Google Scholar 

  19. H. W. Kosh and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959).

    Article  ADS  Google Scholar 

  20. O. F. Nemets and Yu. V. Gofman, Nuclear Physics Handbook (Naukova Dumka, Kiev, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Dyuryagina.

Additional information

Original Russian Text © N.S. Dyuryagina, A.P. Yalovets, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 864–873.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyuryagina, N.S., Yalovets, A.P. Radiation-Induced Electrical Conductivity of Nanocomposite Materials. Tech. Phys. 63, 838–847 (2018). https://doi.org/10.1134/S1063784218060117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060117

Navigation