Skip to main content
Log in

Formation Mechanism of Argon Clathrates with Carbon Dendrites

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation mechanism of argon clathrates with carbon dendrites obtained in the plasma of an atmospheric-pressure gas discharge has been studied. It has been shown that the formation of these clathrates is due to the difference between characteristic times: the lifetime of molecules surrounding argon atoms and the time of C–C bonding. It has been noted that argon clathrates with carbon dendrites can form only if a number of conditions are met: formation of molecular traps in the discharge, provision of a sufficiently low temperature at the center of the arc discharge, and the presence of active carbon particles arising from plasma decomposition of hydrocarbon precursors. Whether or not these conditions are met depends primarily on the composition of the initial hydrocarbon mixture and discharge current density, as follows from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shevelkov, K. A. Kovnir, and J. V. Zaikina, in The Physics and Chemistry of Inorganic Clathrates, Ed. by G. S. Nolas (Springer, 2014), p. 125.

  2. J. Jia, Y. Liang, T. Tsuji, S. Murata, and T. Matsuoka, Sci. Rep. 7, 1290 (2017).

    Article  ADS  Google Scholar 

  3. M. P. Danilaev, E. A. Bogoslov, Yu. E. Pol’skii, A. R. Nasybullin, M. S. Pudovkin, and A. R. Khadiev, Tech. Phys. 62, 255 (2017).

    Article  Google Scholar 

  4. D. Y. Kim and T. Kume, Jpn. J. Appl. Phys. 56, 05FA07 (2017).

    Article  Google Scholar 

  5. A. S. Thakor and S. S. Gambhir, Cancer 63, 395 (2013).

    Google Scholar 

  6. T. Lammers, L. Y. Rizzo, G. Storm, and F. Kiessling, Clin. Cancer Res. 18, 4889 (2012).

    Article  Google Scholar 

  7. D. Kozak, E. Shibata, A. Iizuka, and T. Nakamura, Carbon 70, 87 (2014).

    Article  Google Scholar 

  8. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C 112, 8192 (2008).

    Article  Google Scholar 

  9. D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J. S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, et al., Extrem. Mech. Lett 13, 42 (2017).

    Article  Google Scholar 

  10. M. P. Danilaev, E. A. Bogoslov, and Yu. E. Pol’skii, Tech. Phys. Lett. 40, 857 (2014).

    Article  ADS  Google Scholar 

  11. B. M. Smirnov, Sov. Phys. Usp. 26, 31 (1983).

    Article  ADS  Google Scholar 

  12. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).

    Google Scholar 

  13. M. P. Danilaev, E. A. Bogoslov, O. G. Morozov, A. R. Nasybullin, D. M. Pashin, and Yu. E. Pol’skii, J. Eng. Phys. Thermophys. 88, 774 (2015).

    Article  Google Scholar 

  14. A. Cohen, J. Lundell, and R. B. Gerber, J. Chem. Phys. 119, 6415 (2003).

    Article  ADS  Google Scholar 

  15. A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, Mater. Sci. Eng. R 70, 1 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Danilaev.

Additional information

Original Russian Text © M.P. Danilaev, E.M. Zueva, E.A. Bogoslov, M.S. Pudovkin, Yu.E. Pol’skii, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 883–887.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilaev, M.P., Zueva, E.M., Bogoslov, E.A. et al. Formation Mechanism of Argon Clathrates with Carbon Dendrites. Tech. Phys. 63, 857–861 (2018). https://doi.org/10.1134/S1063784218060105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060105

Navigation