Skip to main content
Log in

Stability of Field Emission from a Single Carbon Nanotube

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It has been found experimentally that the field emission current passing through a single multiwall carbon nanotube heats it up and generates a thermionic component. The nanotube is heated by the Joule heat that releases on its series resistance, through which the current passes. From the solution to the heat conduction equation, the overheating temperature of the emitting end has been estimated. Conditions for field emission stability and for the onset of thermal field emission have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Bulyarskiy, Carbon Nanotubes. Technology. Adjustment of Properties. Applications (Strezhen’, Ul’yanovsk, 2011).

    Google Scholar 

  2. L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, N. I. Sinitsyn, G. V. Torgashov, Yu. F. Zakharchenko, E. A. Fedorov, and V. P. Val’chuk, Chem. Phys. Lett. 233, 63 (1995).

    Article  ADS  Google Scholar 

  3. W. A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  ADS  Google Scholar 

  4. A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, and S. G. Kim, Science 269, 1550 (1995).

    Article  ADS  Google Scholar 

  5. Q. H. Wang, M. Yan, and R. P. H. Chang, Appl. Phys. Lett. 78, 1294 (2001).

    Article  ADS  Google Scholar 

  6. M. Mauger and T. V. Vu, J. Vac. Sci. Technol. B 24, 997 (2006).

    Article  Google Scholar 

  7. A. Reyes-Mena, Ch. Jensen, E. Bard, D. Turner, and K. G. Erdmann, Adv. X-Ray Anal. 48, 204 (2005).

    Google Scholar 

  8. T. Matsumoto and H. Mimura, Appl. Phys. Lett. 82, 1637 (2003).

    Article  ADS  Google Scholar 

  9. Y. Saito, S. Uemura, and K. Hamaguchi, Jpn. J. Appl. Phys. 37, L346 (1998).

    Article  ADS  Google Scholar 

  10. M. Croci, I. Arfaoui, T. Stockli, A. Chatelain, and J.-M. Bonard, Microelectron. J 35, 329 (2004).

    Article  Google Scholar 

  11. Y. Yasutomo, W. Ohue, Y. Gotoh, and H. Tsuji, in Proc. IEEE Int. Meeting for Future of Elec-tron Devices, Osaka, Japan, 2012. doi 10.1109/IMFEDK.2012.6218572

    Google Scholar 

  12. L. Sabaut, P. Ponard, J.-P. Mazellier, and P. Legagneux, J. Vac. Sci. Technol. B 34, 2 (2016).

    Article  Google Scholar 

  13. X. Yuan, W. Zhu, Y. Zhang, N. Xu, Y. Yan, J. Wu, Y. Shen, J. Chen, and J. She, Sci. Rep. 6, 32936 (2016).

    Article  ADS  Google Scholar 

  14. C. Paoloni, A. Carlo, F. Brunetti, and M. Mineo, Terahertz Sci. Technol. 4, 1102 (2011).

    Google Scholar 

  15. N. L. Rupesinghe, M. Chhowalla, K. B. K. Teo, and G. A. J. Amaratunga, J. Vac. Sci. Technol. B 21, 1071 (2003).

    Article  Google Scholar 

  16. A. V. Eletskii, Adv. Phys. Sci. 53, 863 (2010).

    Google Scholar 

  17. G. S. Bocharov and A. V. Eletskii, Nanomaterials 3, 393 (2013).

    Article  Google Scholar 

  18. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).

    Article  ADS  Google Scholar 

  19. A. Mayer and Ph. Lambin, Carbon 40, 429 (2002).

    Article  Google Scholar 

  20. J. P. Sun, Z. X. Zhang, S. M. Hou, and G. M. Zhang, Appl. Phys. A 75, 479 (2002).

    Article  ADS  Google Scholar 

  21. P. Vincent, S. T. Purcell, C. Journe, and V. T. Binh, Phys. Rev. B 66, 075406 (2002).

    Article  ADS  Google Scholar 

  22. A. Ya. Vul’, K. Reich, E. Eidelman, M. L. Terranova, A. Ciorba, S. Orlanducci, V. Sessa, and M. Rossi, Adv. Sci. Lett. 3, 110 (2010).

    Article  Google Scholar 

  23. A. Yu. Babenko, A. T. Dideykin, and E. D. Eidelman, Phys. Solid State 51, 435 (2009).

    Article  ADS  Google Scholar 

  24. A. V. Lakalin, A. A. Pavlov, and A. A. Shamanaev, Russ. Microelectron. 46, 12 (2017).

    Article  Google Scholar 

  25. G. S. Bocharov and A. V. Eletskii, Tech. Phys. 52, 498 (2007).

    Article  Google Scholar 

  26. G. S. Bocharov, A. V. Eletskii, and T. J. Sommerer, Tech. Phys. 56, 540 (2011).

    Article  Google Scholar 

  27. J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).

    MATH  Google Scholar 

  28. J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, and J. E. Fischer, Appl. Phys. A 74, 339 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lakalin.

Additional information

Original Russian Text © S.V. Bulyarskiy, A.A. Dudin, A.V. Lakalin, A.P. Orlov, A.A. Pavlov, R.M. Ryazanov, A.A. Shamanaev, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 920–925.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Dudin, A.A., Lakalin, A.V. et al. Stability of Field Emission from a Single Carbon Nanotube. Tech. Phys. 63, 894–899 (2018). https://doi.org/10.1134/S1063784218060099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218060099

Navigation