Skip to main content
Log in

Charge Separation at the Evaporation (Condensation) Front of Water and Ice. Charging of Spherical Droplets

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Charge separation at evaporation (condensation) front of water and ice is analyzed. Relatively low distribution coefficient of protons and hydroxide ions between vapor and condensed phase that is less than the distribution coefficient of water molecules leads to accumulation of protons and hydroxide ions at the phase front upon evaporation and a decrease in the amount of such species upon condensation. Interphase charge separation is caused by the subsequent diffusion of nonequilibrium protons and hydroxide ions. The charge separation is also affected by the double electric layer generated by orientation defects at the water and ice surfaces. Dependences of electric field at a plane surface of water and ice on the rate of phase transformation are calculated. Electric charges of spherical water droplets are estimated at different field strengths and droplet radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Williams, R. Markson, and S. Heckman, Geophys. Res. Lett. 32, L19810 (2005).

    Article  ADS  Google Scholar 

  2. M. Shimogawa and R. H. Holzworth, Ann. Geophys. 27, 1423 (2009).

    Article  ADS  Google Scholar 

  3. R. G. Harrison, K. L. Aplin, and M. J. Rycroft, J. Atmos. Sol.-Terr. Phys. 72, 376 (2010).

    Article  ADS  Google Scholar 

  4. V. V. Kuznetsov, Atmospheric Electric Field: Facts, Observations, Correlations, and Models (Nauka, Moscow, 2004).

    Google Scholar 

  5. V. M. Dvornikov and A. S. Balybina, Soln.-Zemnaya Fiz., No. 13, 75 (2009).

    Google Scholar 

  6. T. Elperin, N. Kleeorin, M. Liberman, and I. Rogachevskii, Phys. Fluids 25, 085104 (2013).

    Article  ADS  Google Scholar 

  7. A. V. Shavlov and V. A. Dzhumandzhi, J. Aerosol Sci. 91, 54 (2016).

    Article  ADS  Google Scholar 

  8. A. V. Shavlov, I. V. Sokolov, V. L. Hazan, and S. N. Romanyuk, Phys. Scr. 89, 125402 (2014).

    Article  ADS  Google Scholar 

  9. A. V. Shavlov, I. V. Sokolov, and V. A. Dzhumandzhi, Dokl. Phys. 61, 429 (2016).

    Article  ADS  Google Scholar 

  10. A. I. Voeikov, Meteorology (Kartograficheskoe Zavedenie A. Il’ina, St. Petersburg, 1904).

    Google Scholar 

  11. Ya. I. Frenkel’, The Theory of Atmospheric Electricity Phenomena (Gostekhizdat, Moscow, 1949).

    Google Scholar 

  12. Yu. S. Sedunov, The Physics of Formation of the Liquid Droplet Phase in the Atmosphere (Gidrometeoizdat, Leningrad, 1972).

    Google Scholar 

  13. Y. Dong and J. Hallett, J. Geophys. Res. D 97, 20361 (1992).

    Article  ADS  Google Scholar 

  14. A. V. Shavlov, Colloid J. 71, 263 (2009).

    Article  Google Scholar 

  15. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977).

    Google Scholar 

  16. A. G. Amelin, Theoretical Basics of Fogging upon Vapor Condensation (Khimiya, Moscow, 1966).

    Google Scholar 

  17. A. V. Butkovskii, Teplofiz. Vys. Temp. 32, 793 (1994).

    Google Scholar 

  18. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, New York, 1969).

    Google Scholar 

  19. A. I. Volkov and I. M. Zharskii, Comprehensive Chemical Handbook (Sovremennaya Shkola, Minsk, 2005).

    Google Scholar 

  20. I. M. Imyanitov and E. V. Chubarina, Electricity of the Free Atmosphere (Gidrometeoizdat, Leningrad, 1965).

    Google Scholar 

  21. N. N. Koshkin and M. G. Shirkevich, Elementary Physics Handbook (Nauka, Moscow, 1976).

    Google Scholar 

  22. A. V. Shavlov, S. N. Romanyuk, and V. A. Dzhumandzhi, Phys. Plasmas 20, 023703 (2013).

    Article  ADS  Google Scholar 

  23. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shavlov.

Additional information

Original Russian Text © A.V. Shavlov, V.A. Dzhumandzhi, A.A. Yakovenko, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 4, pp. 498–506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavlov, A.V., Dzhumandzhi, V.A. & Yakovenko, A.A. Charge Separation at the Evaporation (Condensation) Front of Water and Ice. Charging of Spherical Droplets. Tech. Phys. 63, 482–490 (2018). https://doi.org/10.1134/S1063784218040205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218040205

Navigation