Skip to main content
Log in

Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

  • Electrophysics, Electron and Ion Beams, Physics of Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Nusinovich, Introduction to the Physics of Gyrotrons (Johns Hopkins Univ. Press, Baltimore, 2004).

    Google Scholar 

  2. Sh. E. Tsimring, Int. J. Infrared Millimeter Waves 22, 1433 (2001).

    Article  Google Scholar 

  3. M. Yu. Glyavin, A. N. Kuftin, N. P. Venediktov, et al., Int. J. Infrared Millimeter Waves 18, 2137 (1997).

    Article  ADS  Google Scholar 

  4. M. Yu. Glyavin, A. L. Goldenberg, A. N. Kuftin, et al., IEEE Trans. Plasma Sci. 27, 474 (1999).

    Article  ADS  Google Scholar 

  5. J. P. Anderson, S. E. Korbly, R. J. Temkin, et al., IEEE Trans. Plasma Sci. 30, 2117 (2002).

    Article  ADS  Google Scholar 

  6. J. P. Anderson, R. J. Temkin, and M. A. Shapiro, IEEE Trans. Electron Devices 52, 825 (2005).

    Article  ADS  Google Scholar 

  7. R. Advani, J. P. Hogge, K. E. Kreischer, et al., IEEE Trans. Plasma Sci. 29, 943 (2001).

    Article  ADS  Google Scholar 

  8. A. N. Kuftin, V. K. Lygin, V. N. Manuilov, et al., Int. J. Infrared Millimeter Waves 14, 783 (1993).

    Article  ADS  Google Scholar 

  9. J. Gr. Pagonakis and J. L. Vomvoridis, IEEE Trans. Plasma Sci. 32, 890 (2004).

    Article  ADS  Google Scholar 

  10. J. Zhang, S. Illy, I. G. Pagonakis, et al., IEEE Trans. Electron Devices 64, 1307 (2017).

    ADS  Google Scholar 

  11. R. L. Ives, P. Borchard, G. Collins, et al., IEEE Trans. Plasma Sci. 36, 620 (2008).

    Article  ADS  Google Scholar 

  12. O. I. Louksha, Doctoral Dissertation in Mathematics and Physics (St. Petersburg Polytechnic Univ., St. Petersburg, 2011).

    Google Scholar 

  13. G. S. Nusinovich, A. N. Vlasov, M. Botton, et al., Phys. Plasmas 8, 3473 (2001).

    Article  ADS  Google Scholar 

  14. S. P. Khodnevich, Elektron. Tekh., Ser. 1: Elektron. SVCh, No. 4, 118 (1969).

    Google Scholar 

  15. A. N. Andronov, V. N. Ilyin, O. I. Luksha, et al., in Proc. 20th Int. Conf. on Infrared and Millimeter Waves, Orlando, United States, 1995, p.141.

  16. V. N. Ilyin, O. I. Louksha, V. E. Mjasnikov, et al., in Proc. 12th Int. Conf. on High-Power Particle Beams, Haifa, Israel, 1998, Vol. 2, p.800.

  17. O. I. Louksha, B. Piosczyk, G. G. Sominski, et al., in Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, Russia, 2005, Vol. 1, p. 135

  18. O. Louksha, B. Piosczyk, G. Sominski, et al., IEEE Trans. Plasma Sci. 34, 502 (2006).

    Article  ADS  Google Scholar 

  19. O. I. Luksha, B. Piosczyk, and G. G. Sominski, Radiophys. Quantum Electron. 49, 793 (2006).

    Article  ADS  Google Scholar 

  20. O. I. Louksha, D. B. Samsonov, G. G. Sominskii, and S. V. Semin, Tech. Phys 58, 751 (2013).

    Article  Google Scholar 

  21. O. I. Louksha, G. G. Sominski, A. V. Arkhipov, et al., IEEE Trans. Plasma Sci. 44, 1310 (2016).

    Article  ADS  Google Scholar 

  22. O. Louksha, B. Piosczyk, G. Sominski, and M. Thumm, in Proc. 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China, 2006, p.86.

  23. O. Louksha, G. Sominski, D. Samsonov, et al., in Proc. 35th IEEE Int. Conf. on Plasma Science, Karlsruhe, Germany, 2008, p.226.

  24. http://www.cst.com.

  25. O. I. Louksha, D. B. Samsonov, G. G. Sominskii, and A. A. Tsapov, Tech. Phys. 57, 835 (2012).

    Article  Google Scholar 

  26. W. B. Hermannsfeldt, Report No. 226 (Stanford Linear Accelerator Center, Menlo Park, 1979).

  27. O. Dumbrajs and J. P. T. Koponen, Phys. Plasmas 6, 2618 (1999).

    Article  ADS  Google Scholar 

  28. N. A. Zavolsky, V. E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron. 49, 108 (2006).

    Article  ADS  Google Scholar 

  29. V. K. Lygin, Sh. E. Tsimring, and B. I. Shevtsov, Radiophys. Quantum Electron. 34, 351 (1991).

    Article  ADS  Google Scholar 

  30. R. Schuldt and E. Borie, Int. J. Infrared Millimeter Waves 16, 1675 (1995).

    Article  ADS  Google Scholar 

  31. R. Pu, G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, Jr., Phys. Plasmas 17, 083105 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Louksha.

Additional information

Original Russian Text © O.I. Louksha, P.A. Trofimov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 4, pp. 614–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louksha, O.I., Trofimov, P.A. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System. Tech. Phys. 63, 598–604 (2018). https://doi.org/10.1134/S106378421804014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421804014X

Navigation