Skip to main content
Log in

Relation between the Hurst Exponent and the Efficiency of Self-organization of a Deformable System

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have established the degree of self-organization of a system under plastic deformation at different scale levels. Using fractal analysis, we have determined the Hurst exponent and correlation lengths in the region of formation of a corrugated (wrinkled) structure in [111] nickel single crystals under compression. This has made it possible to single out two (micro-and meso-) levels of self-organization in the deformable system. A qualitative relation between the values of the Hurst exponent and the stages of the stress–strain curve has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  2. V. V. Gubernatorov, T. S. Sycheva, and A. I. Pyatygin, Fiz. Mezomekh. 7 (S2), 97 (2004).

    Google Scholar 

  3. V. V. Gubernatorov, B. K. Sokolov, I. V. Gervas’eva, and L. R. Vladimirov, Fiz. Mezomekh. 2 (1–2), 157 (1999).

    Google Scholar 

  4. V. V. Gubernatorov, T. S. Sycheva, L. R. Vladimirov, V. S. Matveeva, A. I. Pyatygin, and M. B. Mel’nikov, Fiz. Mezomekh. 5 (6), 95 (2002).

    Google Scholar 

  5. B. K. Sokolov, A. K. Sbitnev, V. V. Gubernatorov, I. V. Gervasyeva, and L. R. Vladimirov, Textures Microstruct. 26–27, 427 (1995).

    Google Scholar 

  6. V. V. Gubernatorov, B. K. Sokolov, L. R. Vladimirov, and I. V. Gervasyeva, Textures Microstruct. 32, 41 (1999).

    Article  Google Scholar 

  7. N. K. Sundaram, Y. Guo, and S. Chandrasekar, Phys. Rev. Lett. 109, 106001 (2012).

    Article  ADS  Google Scholar 

  8. N. Beckmann, P. A. Romero, D. Linsler, M. Dienwiebel, U. Stolz, M. Moseler, and P. Gumbsch, Phys. Rev. Appl. 2, 064004 (2014).

    Article  ADS  Google Scholar 

  9. M. N. Hamdan, A. A. Al-Qaisia, and S. Abdallah, Int. J. Mod. Nonlinear Theory Appl. 1 (3), 55 (2012).

    Article  Google Scholar 

  10. S. Khoddam, H. Beladi, P. D. Hodgson, and A. Zarei-Hanzaki, Mater. Des. 60, 146 (2014).

    Article  Google Scholar 

  11. A. Auguste, L. Jin, Z. Suo, and R. C. Hayward, Soft Matter 10, 6520 (2014).

    Article  ADS  Google Scholar 

  12. S.-J. Yu, Thin Solid Films 558, 247 (2014).

    Article  ADS  Google Scholar 

  13. H. Hirakata, T. Maruyama, A. Yonezu, and K. J. Minoshima, Appl. Phys. 113, 203503 (2013).

    Article  Google Scholar 

  14. J. Y. Chung, J.-H. Lee, K. L. Beers, and C. M. Stafford, Nano Lett. 11, 3361 (2011).

    Article  ADS  Google Scholar 

  15. A. Roy, S. Kundu, K. Müller, A. Rosenauer, S. Singh, P. Pant, M. P. Gururajan, P. Kumar, J. Weissmüller, A. K. Singh, and N. Ravishankar, Nano Lett. 14, 4859 (2014).

    Article  ADS  Google Scholar 

  16. V. E. Panin and A. V. Panin, Fiz. Mezomekh. 8 (5), 7 (2005).

    Google Scholar 

  17. V. P. Alekhin, The Physics of Surface Strength and Plasticity (Nauka, Moscow, 1983).

    Google Scholar 

  18. V. E. Panin, Fiz. Mezomekh. 2 (6), 5 (1999).

    Google Scholar 

  19. V. P. Alekhin, Konstr. Kompoz. Mater., No. 3, 53 (2005).

    Google Scholar 

  20. E. A. Alferova and D. V. Lychagin, Appl. Mech. Mater. 379, 66 (2013).

    Article  Google Scholar 

  21. D. V. Lychagin and E. A. Alfyorova, Phys. Solid State 57, 2034 (2015).

    Article  ADS  Google Scholar 

  22. D. V. Lychagin, E. A. Alferova, and V. A. Starenchenko, Fiz. Mezomekh. 13 (3), 75 (2010).

    Google Scholar 

  23. D. V. Lychagin, S. Y. Tarasov, A. V. Chumaevskii, and E. A. Alfyorova, Appl. Surf. Sci. 371, 547 (2016).

    Article  ADS  Google Scholar 

  24. H.-N. Yang, Y.-P. Zhao, A. Chan, T.-M. Lu, and G.-C. Wang, Phys. Rev. B 56, 4224 (1997).

    Article  ADS  Google Scholar 

  25. M. Pelliccione and T.-M. Lu, Evolution of Thin Film Morphology. Modeling and Simulations (Springer, New York, 2008).

    Google Scholar 

  26. S. I. Gubkin, Flow of Metals (Metallurgizdat, Moscow, 1961).

    Google Scholar 

  27. M. Pelliccione, T. Karabacak, C. Gaire, G. C. Wang, and T. M. Lu, Phys. Rev. B 74, 125420 (2006).

    Article  ADS  Google Scholar 

  28. L. Blunt and X. Jiang, Advanced Techniques for Assessment Surface Topography: Development of a Basis for 3D Surface Texture Standards “SURFSTAND” (Kogan Page Science, London, 2003).

    Google Scholar 

  29. O. Wouters, W. P. Vellinga, R. van Tijum, and J. T. M. De Hosson, Acta Mater. 54, 2813 (2006).

    Article  Google Scholar 

  30. V. N. Aptukov, V. Yu. Mitin, and A. P. Skachkov, Vestn. Permsk. Univ. Mat. Mekh. Inf. 4 (4), 30 (2010).

    Google Scholar 

  31. E. A. Lyapunova, A. N. Petrova, I. G. Brodova, O. B. Naimark, M. A. Sokovikov, V. V. Chudinov, and S. V. Uvarov, Fiz. Mezomekh. 15 (2), 61 (2012).

    Google Scholar 

  32. V. E. Panin and L. E. Panin, Fiz. Mezomekh. 7 (4), 5 (2004).

    MathSciNet  Google Scholar 

  33. N. A. Koneva, Soros. Obraz. Zh., No. 6, 99 (1996).

    Google Scholar 

  34. G. A. Malygin, Phys.-Usp. 42, 887 (1999).

    Article  ADS  Google Scholar 

  35. V. A. Oborin, M. V. Bannikov, and O. B. Naimark, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., No. 2, 87 (2010).

    Google Scholar 

  36. J. Feder, Fractals (Plenum, New York, 1988).

    Book  MATH  Google Scholar 

  37. V. Oborin, M. Bannikov, O. Naimark, and C. Froustey, Tech. Phys. Lett. 37, 241 (2011).

    Article  ADS  Google Scholar 

  38. V. A. Oborin, O. B. Naimark, U. Ran, and A. Koroleva, Vestn. Permsk. Univ. Fiz. 4 (22), 4 (2012).

    Google Scholar 

  39. M. Zaiser, F. M. Grasset, V. Koutsos, and E. C. Aifantis, Phys. Rev. Lett. 93, 195507 (2004).

    Article  ADS  Google Scholar 

  40. P. V. Kuznetsov, V. E. Panin, K. V. Levin, A. G. Lipnitskii, and J. Schreiber, Fiz. Mezomekh. 3 (4), 89 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Alfyorova.

Additional information

Original Russian Text © E.A. Alfyorova, D.V. Lychagin, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 4, pp. 555–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfyorova, E.A., Lychagin, D.V. Relation between the Hurst Exponent and the Efficiency of Self-organization of a Deformable System. Tech. Phys. 63, 540–545 (2018). https://doi.org/10.1134/S1063784218040035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218040035

Navigation