Technical Physics

, Volume 63, Issue 3, pp 339–346 | Cite as

Interaction of an Optical Discharge with a Shock Wave

  • V. N. Zudov
  • P. K. Tret’yakov
Gases and Liquids


The results of an experimental study of the impact of the focused pulsed-periodic radiation from a CO2 laser on a gas-dynamic structure in a supersonic jet are presented. The radiation of the CO2 laser is propagated across the stream and focused by a lens on the axis of the supersonic jet. To register the flow structure, a shadow scheme with a slit and a flat knife located along the flow is used. The image is fixed by a speed camera with an exposure time of 1.5 μs and a frame rate of 1000 1/s. In the flow, the plasma initiated by the pulsedperiodic laser is visualized in order to identify and determine the period of plasma development, as well as the motion of the initial front of the shock wave. It is shown that at the transverse input of laser radiation into the stream the periodic structure of the thermal trace is created with the formation of an unsteady shock wave from the energy release zone. At small repetition rates of laser radiation pulses, the thermal spot interacts with the flow in the pulsed mode. It is shown that elliptic nonstationary shock waves are formed only at low subsonic flow velocities and in a stationary atmosphere. The process of nonstationary ignition by an optical discharge of a methane–air mixture during a subsonic outflow into a motionless atmosphere is shown experimentally. The results of optical visualization indicate burning in the trace behind the optical discharge region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. P. Raizer, Laser Spark and Propagation of Discharges (Nauka, Moscow, 1974).Google Scholar
  2. 2.
    T. X. Phuoc, Opt. Laser Eng. 44, 351 (2006).MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Yan, R. Adelgren, M. Boguszko, G. Elliott, and D. Knight, in Proc. 41st Aerospace Sciences Meeting and Exhibit, Reno, United States, 2003, p. AIAA-2003-1051.Google Scholar
  4. 4.
    P. K. Tret’yakov, G. N. Grachev, A. I. Ivanchenko, V. L. Krainev, A. G. Ponomarenko, and V. N. Tishchenko, Dokl. Ross. Akad. Nauk 336, 466 (1994).Google Scholar
  5. 5.
    P. K. Tret’yakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V. I. Yakovlev, Dokl. Phys. 41, 566 (1996).ADSGoogle Scholar
  6. 6.
    V. N. Zudov, P. K. Tret’yakov, A. V. Tupikin, and V. I. Yakovlev, Fluid Dyn. 38, 782 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    V. N. Zudov, Tech. Phys. Lett. 35, 315 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    V. N. Zudov, P. K. Tret’yakov, and A. V. Tupikin, Nauchn. Vizualizatsiya 8 (2), 24 (2016).Google Scholar
  9. 9.
    D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).CrossRefGoogle Scholar
  10. 10.
    D. Bradley and F. K. K. Lung, Combust. Flame 69, 71 (1987).CrossRefGoogle Scholar
  11. 11.
    S. N. Bagaev, G. N. Grachev, A. G. Ponomarenko, et al., in Science and Nanotechnology (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2007), pp. 123–135.Google Scholar
  12. 12.
    A. A. Sorokin, S. V. Bobashev, K. Tiedtke, and M. Richter, J. Phys. B 39, L299 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    I. G. Dors and C. G. Parigger, Appl. Opt. 42, 5978 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    S. Ghosh and K. Mahesh, J. Fluid Mech. 605, 329 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    Y.-L. Chen, J. W. L. Lewis, and C. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    C. G. Parigger, in Laser-Induced Breakdown Spectroscopy, Ed. by A. W. Miziolek, V. Palleschi, and I. Schechter (Cambridge Univ. Press, New York, 2006), Chap. 4.Google Scholar
  17. 17.
    S. Brieschenk, R. Hruschka, S. O’Byrne, and H. Kleine, Proc. SPIE 7126, 71260N (2009).CrossRefGoogle Scholar
  18. 18.
    A. Sasoh, T. Ohtani, and K. Mori, Phys. Rev. Lett. 97, 205004 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations