Advertisement

Technical Physics

, Volume 63, Issue 3, pp 398–406 | Cite as

Specifics of the Electrical Properties of Composite Solid Oxide Membranes Based on SrTi0.5Fe0.5O3–δ

  • V. V. Sal’nikov
  • E. Yu. Pikalova
  • A. A. Kol’chugin
  • I. V. Nikolaenko
Solid State Electronics

Abstract

The electrical properties of dual-phase fluorite-pervoskite oxide systems based on strontium titanate- ferrite (SrTi0.5Fe0.5O3–δ) are studied. We find that the oxygen ionic and ambipolar conductivities of strontium titanate-ferrite can be considerably improved by introducing the fluorite phase Ce0.8(Sm0.8Sr0.2)0.2O2–δ. This is advantageous considering the prospects of applying these types of composite materials in different electrochemical devices, e.g., as membrane materials in electrochemical converters for the production of hydrogen and syngas and anode materials in solid oxide fuel cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin, and J. C. Dinitz da Costa, J. Membr. Sci. 320, 13 (2008).CrossRefGoogle Scholar
  2. 2.
    P.-M. Geffroy, J. Fouletier, N. Richet, and T. Chartier, Chem. Eng. Sci. 87, 408 (2013).CrossRefGoogle Scholar
  3. 3.
    N. Mahato, A. Banerjiee, A. Gupta, Sh. Omar, and K. Balani, Prog. Mater. Sci. 72, 141 (2015).CrossRefGoogle Scholar
  4. 4.
    H. J. M. Bouwmeester, Catal. Today 82, 141 (2003).CrossRefGoogle Scholar
  5. 5.
    F. Schulze-Kuppers, S. F. P. ten Donkelaar, S. Baumann, P. Prigorodov, Y. J. Sohn, H. J. M. Bouwmeester, W. A. Meulenberg, and O. Guillon, Sep. Purif. Technol. 147, 414 (2015).CrossRefGoogle Scholar
  6. 6.
    P. Meuffels, J. Eur. Ceram. Soc. 27, 285 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Murashkina, E. Pikalova, D. Medvedev, A. Demin, and P. Tsiakaras, Int. J. Hydrogen Energy 39, 12472 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto, and T. Norby, J. Phys. Chem. Solids 58, 969 (1997).CrossRefADSGoogle Scholar
  9. 9.
    A. A. Murashkina, E. Yu. Pikalova, and A. K. Demin, Russ. J. Electrochem. 45, 542 (2009).CrossRefGoogle Scholar
  10. 10.
    N. H. Perry, D. Pergolesi, S. R. Bishop, and H. L. Tuller, Solid State Ionics 273, 18 (2015).CrossRefGoogle Scholar
  11. 11.
    D. P. Fagg, V. V. Kharton, J. R. Frade, and A. A. L. Ferreira, Solid State Ionics 156, 45 (2003).CrossRefGoogle Scholar
  12. 12.
    H. X. Luo, H. Q. Jiang, T. Klande, Z. W. Cao, F. Y. Liang, H. H. Wang, and J. R. Caro, Chem. Mater. 24, 2148 (2012).CrossRefGoogle Scholar
  13. 13.
    H. Cheng, N. Zhang, X. Xiong, X. Lu, H. Zhao, S. Li, and Zh. Zhou, ACS Sustainable Chem. Eng. 3, 1982 (2015).CrossRefGoogle Scholar
  14. 14.
    Z. Wang, W. Sun, Zh. Zhu, T. Liu, and W. Liu, ACS Appl. Mater. Interfaces 5, 11038 (2013).CrossRefGoogle Scholar
  15. 15.
    A. A. Murashkina, V. S. Sergeeva, D. A. Medvedev, and A. K. Demin, Perspekt. Mater. 4, 29 (2012).Google Scholar
  16. 16.
    E. Yu. Pikalova, A. A. Murashkina, D. I. Medvedev, and A. K. Demin, RF Patent No. 2510385 (2014).Google Scholar
  17. 17.
    E. Pikalova, A. Murashkina, D. Medvedev, P. Pikalov, and S. Plaksin, Solid State Ionics 262, 640 (2014).CrossRefGoogle Scholar
  18. 18.
    V. V. Sal’nikov and E. Yu. Pikalova, Phys. Solid State 57, 1944 (2015).CrossRefADSGoogle Scholar
  19. 19.
    J. R. Jurado, M. T. Colomer, and J. R. Frade, J. Am. Ceram. Soc. 83, 2715 (2000).CrossRefGoogle Scholar
  20. 20.
    J. R. Jurado, M. T. Colomer, and J. R. Frade, Solid State Ionics 143, 251 (2001).CrossRefGoogle Scholar
  21. 21.
    B. Boukamp, Solid State Ionics 20, 31 (1986).CrossRefGoogle Scholar
  22. 22.
    A. A. Snarskii, I. V. Bezsudnov, and V. A. Sevryukov, Transport Processes in Macroscopic Disordered Media: From Mean-Field Theory to Percolation (LKI, Moscow, 2007).zbMATHGoogle Scholar
  23. 23.
    D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).CrossRefGoogle Scholar
  24. 24.
    T. Shi, Y. Chen, and X. Guo, Prog. Mater. Sci. 80, 77 (2016).CrossRefGoogle Scholar
  25. 25.
    R. Merkle and J. Maier, Phys. Chem. Chem. Phys. 5, 2297 (2003).CrossRefGoogle Scholar
  26. 26.
    L. A. Dunyushkina, Russ. J. Electrochem. 43, 894 (2007).CrossRefGoogle Scholar
  27. 27.
    N. H. Perry, D. Pergolesi, S. R. Bishop, and H. L. Tuller, Solid State Ionics 273, 18 (2015).CrossRefGoogle Scholar
  28. 28.
    A. Rothschild, W. Menesklou, H. L. Tuller, and E. Ivers- Tiffee, Chem. Mater. 18, 3651 (2006).CrossRefGoogle Scholar
  29. 29.
    M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ionics 129, 63 (2000).CrossRefGoogle Scholar
  30. 30.
    J. E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).CrossRefADSGoogle Scholar
  31. 31.
    C. M. Kleinlogel and L. J. Gauckler, J.Electroceram. 129, 231 (2000).CrossRefGoogle Scholar
  32. 32.
    J. Jamnik, Solid State Ionics 157, 19 (2003).CrossRefGoogle Scholar
  33. 33.
    R. Waser, J. Am. Ceram. Soc. 74, 1934 (1991).CrossRefGoogle Scholar
  34. 34.
    R. Waser, Solid State Ionics 75, 89 (1995).CrossRefGoogle Scholar
  35. 35.
    R. Muccillo and J. R. Carmo, Mater. Res. Bull. 47, 1204 (2012).CrossRefGoogle Scholar
  36. 36.
    E. Chinarro, J. R. Jurado, R. M. Figueiredo, and J. R. Frade, Solid State Ionics 160, 161 (2003).CrossRefGoogle Scholar
  37. 37.
    E. Yu. Pikalova, A. A. Murashkina, and D. A. Medvedev, Russ. J. Electrochem. 47, 681 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Sal’nikov
    • 1
  • E. Yu. Pikalova
    • 1
    • 2
  • A. A. Kol’chugin
    • 1
    • 2
  • I. V. Nikolaenko
    • 2
    • 3
  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations