Flash Sintering of Oxide Ceramics under Microwave Heating
- 14 Downloads
Abstract
We report on the results of the analysis of the effect of flash sintering, which is observed upon heating compacted powder materials by high-intensity microwave radiation. Ceramic samples of Y2O3, MgAl2O4, and Yb: (LaO)2O3 were sintered to a density exceeding 98–99% of the theoretical value during 0.5–5 min without isothermal hold. The specific microwave power absorbed volumetrically in the samples was 20–400 W/cm3. Based on the analysis of the experimental data (microwave radiation power and heating and cooling rates) and of the microstructure of the obtained materials, we propose a mechanism of flash sintering based on the evolution of the thermal instability and softening (melting) of the grain boundaries. The proposed mechanism also explains the flash sintering effect observed when a dc or a low-frequency ac voltage is applied to the samples. The microwave heating makes it possible to implement flash sintering without using electrodes for supplying energy to the articles being sintered.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Z. A. Munir, D. V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011).CrossRefGoogle Scholar
- 2.R. Raj, M. Cologna, and J. S. C. Francis, J. Am. Ceram. Soc. 94, 1941 (2011).CrossRefGoogle Scholar
- 3.O. Guillon, J. Gonzales-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, Adv. Eng. Mater 16, 830 (2014).CrossRefGoogle Scholar
- 4.M. Cologna, A. L. G. Prette, and R. Raj, J. Am. Ceram. Soc. 94, 316 (2011).CrossRefGoogle Scholar
- 5.M. Yu, S. Grasso, R. McKinnon, Th. Saunders, and M. J. Reece, Adv. Appl. Ceram. 116, 24 (2017).CrossRefGoogle Scholar
- 6.V. A. Fok, Tr. Leningr. Fiz.-Tekh. Inst. 5, 52 (1928).Google Scholar
- 7.R. Raj, J. Eur. Ceram. Soc. 32, 2293 (2012).CrossRefGoogle Scholar
- 8.G. Roussy, A. Bennani, and J. M. Thiebaut, J. Appl. Phys. 62, 1167 (1987).ADSCrossRefGoogle Scholar
- 9.Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, J. Phys. D: Appl. Phys. 34, R55 (2001).ADSCrossRefGoogle Scholar
- 10.V. E. Semenov and N. A. Zharova, in Advances in Microwave and Radio Frequency Processing, Ed. by M. Willert-Porada (Springer, Berlin, 2006), p. 482.Google Scholar
- 11.Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, G. Denisov, A. Bogdashev, G. Kalynova, V. Semenov, and N. Zharova, IEEE Trans. Plasma Sci. 32, 67 (2004).ADSCrossRefGoogle Scholar
- 12.F. Kremer and J. R. Izatt, Int. J. Infrared Millimeter Waves 2, 675 (1981).ADSCrossRefGoogle Scholar
- 13.H. D. Kimrey and M. A. Janney, Mater. Res. Soc. Symp. Proc. 124, 367 (1988).CrossRefGoogle Scholar
- 14.J. Jackson, Classical Electrodynamics (Wiley, New York, 1962).MATHGoogle Scholar
- 15.Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, V. V. Kholoptsev, K. I. Rybakov, and A. A. Sorokin, J. Am. Ceram. Soc. 96, 3518 (2015).CrossRefGoogle Scholar
- 16.Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, V. V. Kholoptsev, I. V. Plotnikov, K. I. Rybakov, and A. A. Sorokin, Materials 9, 684 (2016).ADSCrossRefGoogle Scholar
- 17.J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, J. Am. Ceram. Soc. 83, 2866 (2000).CrossRefGoogle Scholar
- 18.Q. Hao, W. Li, H. Zeng, Q. Yang, Ch. Dou, H. Zhou, and W. Lu, Appl. Phys. Lett. 92, 211106 (2008).ADSCrossRefGoogle Scholar
- 19.R. M. German, Sintering Theory and Practice (Wiley, New York, 1996).Google Scholar
- 20.S. Kochawattana, A. Stevenson, S.-H. Lee, M. Ramirez, V. Gopalan, J. Dumm, V. K. Castillo, G. J. Quarles, and G. L. Messing, J. Eur. Ceram. Soc. 28, 1527 (2008).CrossRefGoogle Scholar
- 21.D. L. Johnson, J. Am. Ceram. Soc. 74, 849 (1991).CrossRefGoogle Scholar
- 22.J. O. Broughton and G. M. Gilmer, J. Phys. Chem. 91, 6347 (1987).CrossRefGoogle Scholar
- 23.R. Raj, J. Am. Ceram. Soc. 99, 3226 (2016).CrossRefGoogle Scholar