Technical Physics

, Volume 63, Issue 3, pp 391–397 | Cite as

Flash Sintering of Oxide Ceramics under Microwave Heating

  • Yu. V. Bykov
  • S. V. Egorov
  • A. G. Eremeev
  • I. V. Plotnikov
  • K. I. Rybakov
  • A. A. Sorokin
  • V. V. Kholoptsev
Physical Science of Materials
  • 14 Downloads

Abstract

We report on the results of the analysis of the effect of flash sintering, which is observed upon heating compacted powder materials by high-intensity microwave radiation. Ceramic samples of Y2O3, MgAl2O4, and Yb: (LaO)2O3 were sintered to a density exceeding 98–99% of the theoretical value during 0.5–5 min without isothermal hold. The specific microwave power absorbed volumetrically in the samples was 20–400 W/cm3. Based on the analysis of the experimental data (microwave radiation power and heating and cooling rates) and of the microstructure of the obtained materials, we propose a mechanism of flash sintering based on the evolution of the thermal instability and softening (melting) of the grain boundaries. The proposed mechanism also explains the flash sintering effect observed when a dc or a low-frequency ac voltage is applied to the samples. The microwave heating makes it possible to implement flash sintering without using electrodes for supplying energy to the articles being sintered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. A. Munir, D. V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011).CrossRefGoogle Scholar
  2. 2.
    R. Raj, M. Cologna, and J. S. C. Francis, J. Am. Ceram. Soc. 94, 1941 (2011).CrossRefGoogle Scholar
  3. 3.
    O. Guillon, J. Gonzales-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, Adv. Eng. Mater 16, 830 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Cologna, A. L. G. Prette, and R. Raj, J. Am. Ceram. Soc. 94, 316 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Yu, S. Grasso, R. McKinnon, Th. Saunders, and M. J. Reece, Adv. Appl. Ceram. 116, 24 (2017).CrossRefGoogle Scholar
  6. 6.
    V. A. Fok, Tr. Leningr. Fiz.-Tekh. Inst. 5, 52 (1928).Google Scholar
  7. 7.
    R. Raj, J. Eur. Ceram. Soc. 32, 2293 (2012).CrossRefGoogle Scholar
  8. 8.
    G. Roussy, A. Bennani, and J. M. Thiebaut, J. Appl. Phys. 62, 1167 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, J. Phys. D: Appl. Phys. 34, R55 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Semenov and N. A. Zharova, in Advances in Microwave and Radio Frequency Processing, Ed. by M. Willert-Porada (Springer, Berlin, 2006), p. 482.Google Scholar
  11. 11.
    Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, G. Denisov, A. Bogdashev, G. Kalynova, V. Semenov, and N. Zharova, IEEE Trans. Plasma Sci. 32, 67 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    F. Kremer and J. R. Izatt, Int. J. Infrared Millimeter Waves 2, 675 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    H. D. Kimrey and M. A. Janney, Mater. Res. Soc. Symp. Proc. 124, 367 (1988).CrossRefGoogle Scholar
  14. 14.
    J. Jackson, Classical Electrodynamics (Wiley, New York, 1962).MATHGoogle Scholar
  15. 15.
    Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, V. V. Kholoptsev, K. I. Rybakov, and A. A. Sorokin, J. Am. Ceram. Soc. 96, 3518 (2015).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, V. V. Kholoptsev, I. V. Plotnikov, K. I. Rybakov, and A. A. Sorokin, Materials 9, 684 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    J.-G. Li, T. Ikegami, J.-H. Lee, and T. Mori, J. Am. Ceram. Soc. 83, 2866 (2000).CrossRefGoogle Scholar
  18. 18.
    Q. Hao, W. Li, H. Zeng, Q. Yang, Ch. Dou, H. Zhou, and W. Lu, Appl. Phys. Lett. 92, 211106 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    R. M. German, Sintering Theory and Practice (Wiley, New York, 1996).Google Scholar
  20. 20.
    S. Kochawattana, A. Stevenson, S.-H. Lee, M. Ramirez, V. Gopalan, J. Dumm, V. K. Castillo, G. J. Quarles, and G. L. Messing, J. Eur. Ceram. Soc. 28, 1527 (2008).CrossRefGoogle Scholar
  21. 21.
    D. L. Johnson, J. Am. Ceram. Soc. 74, 849 (1991).CrossRefGoogle Scholar
  22. 22.
    J. O. Broughton and G. M. Gilmer, J. Phys. Chem. 91, 6347 (1987).CrossRefGoogle Scholar
  23. 23.
    R. Raj, J. Am. Ceram. Soc. 99, 3226 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Bykov
    • 1
  • S. V. Egorov
    • 1
  • A. G. Eremeev
    • 1
  • I. V. Plotnikov
    • 1
  • K. I. Rybakov
    • 1
    • 2
  • A. A. Sorokin
    • 1
  • V. V. Kholoptsev
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations