Advertisement

Technical Physics

, Volume 63, Issue 3, pp 452–459 | Cite as

Features of the Development of Electron-Optical Systems for Pulsed Terahertz Traveling-Wave Tubes (Review)

  • A. A. Burtsev
  • Yu. A. Grigor’ev
  • A. V. Danilushkin
  • I. A. Navrotskii
  • A. A. Pavlov
  • K. V. Shumikhin
Physical Electronics
  • 15 Downloads

Abstract

We present an analysis of the current state and development of pulsed amplifying traveling-wave tubes for terahertz radiation operation at frequencies of at least 200 GHz, as well as the development prospects of the principles of creating electron-optical and magnetic systems. The possibility of using field emission cathodes based on carbon nanotubes for constructing an electron-optical system with the compression of a sheet beam is discussed. A numerical simulation of a field emission electron gun forming a sheet electron beam for traveling-wave tubes of the terahertz range is carried out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Tucek, M. A. Basten, D. A. Gallgher, and K. E. Kreischer, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 19.Google Scholar
  2. 2.
    K. E. Kreischer et al., in Proc. 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, United States, 2008. https://doi.org/10.1109/ICIMW.2008.4665704Google Scholar
  3. 3.
    J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 153.Google Scholar
  4. 4.
    C. D. Joye, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 219.Google Scholar
  5. 5.
    K. Nguyen, E. Wright, D. Pershing, and L. Ludeking, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 23.Google Scholar
  6. 6.
    C. M. Armstrong et al., in Proc. IEEE Int. Vacuum Electronics Conf., London, England, 2017.Google Scholar
  7. 7.
    Y.-M. Shin, A. Baig, D. Gamzina, and N. C. Luhmann, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 185.Google Scholar
  8. 8.
    T. A. Karetnikova, N. M. Ryskin, A. G. Rozhnev, G. V. Torgashov, P. D. Shalaev, and A. A. Burtsev, in Proc. 42nd IEEE Int. Conf. on Plasma Sciences, Antalya, Turkey, 2015. doi 10.1109/PLASMA.2015.7179925Google Scholar
  9. 9.
    Y.-M. Shin, L. R. Barnett, and N. C. Luhmann, IEEE Trans. Electron Devices 56, 706 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    A. Baig, D. Gamzina, R. Barchfeld, C. Domier, L. R. Barnett, and N. C. Luhmann, Phys. Plasmas 19, 093110 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. Field et al., in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 225.Google Scholar
  12. 12.
    B. Levush et al., in Proc. 34th Int. Conf. on Infrared, Millimeter and Terahertz Waves, Busan, South Korea, 2009. https://doi.org/10.1109/ICIMW.2009.5325772Google Scholar
  13. 13.
    J. Zhao et al., in Proc. IEEE Int. Vacuum Electronics Conf., Bangalore, India, 2011, p. 41.Google Scholar
  14. 14.
    J. Zhao, D. Gamzina, A. Baig, L. Barnett, N. C. Luhmann, Na Li, and Ji Li, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2012, p. 47.Google Scholar
  15. 15.
    B. Ch. Dyubua and O. V. Polivnikova, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 4, 187 (2013).Google Scholar
  16. 16.
    S. N. Treneva, SU Author’s Certificate No. 105480 (1955).Google Scholar
  17. 17.
    T. Kimura, J. Atkinson, S. Forrest, T. Grant, T. Hunter, M. Field, R. Borwick, and B. Brar, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2012, p. 195.Google Scholar
  18. 18.
    X. Shi, Z. Wang, X. Tang, T. Tang, H. Gong, Q. Zhou, W. Bo, Y. Zhang, Z. Duan, Y. Wei, Y. Gong, and J. Feng, IEEE Trans. Plasma Sci. 42, 3996 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    J. E. Atkinson et al., in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 97.Google Scholar
  20. 20.
    B. C. Stockwell et al., in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 451.Google Scholar
  21. 21.
    M. A. Basten and J. H. Booske, J. Appl. Phys. 85, 6313 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zheng, D. Gamzina, B. Popovic, and N. C. Luhmann, IEEE Trans. Electron Devices 63, 4466 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Zheng, D. Gamzina, N. C. Luhmann, and M. Moran, in Proc. IEEE Int. Vacuum Electronics Conf., London, England, 2017.Google Scholar
  24. 24.
    G. A. Spindt, J. Appl. Phys. 39, 3504 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    G. Ulisse, C. Ciceroni, F. Brunetti, and A. Di Carlo, IEEE Trans. Electron Devices 61, 2558 (2014).CrossRefGoogle Scholar
  26. 26.
    Yu. V. Gulyaev, N. I. Sinitsyn, G. V. Torgashov, A. I. Zhbanov, I. G. Torgashov, and S. G. Saveliev, J. Commun. Technol. Electron. 48, 1288 (2003).Google Scholar
  27. 27.
    V. A. Galperin, A. A. Zhukov, A. A. Pavlov, S. N. Skorik, Yu. P. Shaman, and A. A. Shamanaev, Semiconductors 48, 1742 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    A. T. Rakhimov, Phys.-Usp. 43, 926 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    R. K. Yafarov, P. D. Shalaev, and A. R. Yafarov, Radiotekhnika, No. 7, 41 (2016).Google Scholar
  30. 30.
    D. R. Whaley et al., IEEE Trans. Electron Devices 56, 896 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    D. R. Whaley, R. Duggal, C. Armstrong, et al., in Proc. IEEE Int. Vacuum Electronics Conf., Paris, France, 2013. doi 10.1109/IVEC.2013.6571009Google Scholar
  32. 32.
    G. Ulisse, F. Brunetti, and A. Carlo, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2010, p. 449.Google Scholar
  33. 33.
    K. H. Gilchrist, J. R. Piascik, B. R. Stoner, E. J. Radauscher, J. J. Amsden, C. B. Parker, and J. T. Glass, in Proc. IEEE Int. Vacuum Electronics Conf., Monterey, CA, United States, 2014, p. 155.Google Scholar
  34. 34.
    E. E. Martin, J. K. Trolan, and W. P. Dyke, J. Appl. Phys. 31, 782 (1960).ADSCrossRefGoogle Scholar
  35. 35.
    P. M. Meleshkevich, Elektron. Tekh., Ser. 1: SVCh-Tekh., No. 4, 6 (2016).Google Scholar
  36. 36.
    A. A. Burtsev, A. A. Pavlov, E. P. Kitsyuk, Yu. A. Grigor’ev, A. V. Danilushkin, and K. V. Shumikhin, Tech. Phys. Lett. 43, 542 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Burtsev
    • 1
    • 2
  • Yu. A. Grigor’ev
    • 1
  • A. V. Danilushkin
    • 1
    • 2
  • I. A. Navrotskii
    • 1
  • A. A. Pavlov
    • 3
  • K. V. Shumikhin
    • 1
  1. 1.AO NPP AlmazSaratovRussia
  2. 2.Gagarin Saratov State Technical UniversitySaratovRussia
  3. 3.Institute of Nanotechnologies of MicroelectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations