Skip to main content
Log in

Electrical and Optical Properties of Cu2Zn(Fe,Mn)SnS4 Films Prepared by Spray Pyrolysis

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have analyzed the electrical and optical properties of Cu2ZnSnS4, Cu2FeSnS4, and Cu2MnSnS4 films with the p-type electrical conductivity, which were prepared by spray pyrolysis at temperature TS = 290°C using 0.1 M aqueous solutions of salts CuCl2 · 2H2O, ZnCl2 · 2H2O, MnCl2 · 2H2O, FeCl3 · 6H2O, SnCl4 · 5H2O, and (NH2)CS. The energy parameters have been determined from analyzing the electrophysical properties of the films using the model of energy barriers at grain boundaries in polycrystalline materials, and the thickness of intercrystallite boundaries has been estimated. The extent of the influence of the hole concentration p0 in the bulk of crystallites and height E b of the energy barriers between grains on the electrical conductivity has been determined. The optical bandgap width for thin Cu2Zn(Fe,Mn)SnS4 films has been calculated based on analyzing the spectral dependences of the absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hirai, Y. Kurokawa, and A. Yamada, Jpn. J. Appl. Phys. 53, 012301 (2014).

    Article  ADS  Google Scholar 

  2. T. A. Gessert, S.-H. Wei, J. Ma, D. S. Albin, R. G. Dhere, J. N. Duenow, D. Kuciauskas, A. Kavence, T. M. Barnes, J. M. Burst, W. L. Rance, M. O. Reese, and H. R. Moutinho, Sol. Energy Mater. Sol. Cells 119, 149 (2013).

    Article  Google Scholar 

  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. Dunlop, Prog. Photovoltaics: Res. Appl. 23, 1 (2015).

    Article  Google Scholar 

  4. Y. Zhao and C. Burda, Energy Environ. Sci. 5, 5564 (2012).

    Article  Google Scholar 

  5. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, and Y. Zhu, Adv. Energy Mater. 4, 13014651 (2014).

    Google Scholar 

  6. Y. Cui, R. Deng, G. Wang, and D. Pan, J. Mater. Chem. 22, 23136 (2012).

    Article  Google Scholar 

  7. L. Ai and J. Jiang, Nanotecnology 23, 49561 (2012).

    Article  Google Scholar 

  8. X. Jiang, W. Xu, R. Tan, W. Song, and J. Chen, Mater. Lett. 102–103, 39 (2013).

    Article  Google Scholar 

  9. H. Guan, H. Shen, B. Jiao, and X. Wang, Mater. Sci. Semicond. Process. 25, 159 (2014).

    Article  Google Scholar 

  10. X. Zhang, N. Bao, K. Ramasamy, Yu-H. A. Wang, Y. Wang, B. Lin, and A. Gupta, Chem. Commun. 48, 4956 (2012).

    Article  Google Scholar 

  11. R. R. Prabhakar, N. H. Loc, M. H. Kumar, P. P. Boix, S. Juan, R. A. John, S. K. Batabyal, and L. H. Wong, ACS Appl. Mater. Interfaces 6, 17661 (2014).

    Article  Google Scholar 

  12. S. M. Pawar, A. I. Inamdar, B. S. Pawar, K. V. Gurav, S. W. Shin, X. Yanjun, S. S. Kolekar, J. H. Lee, J. H. Kim, and H. Im, Mater. Lett. 118, 76 (2014).

    Article  Google Scholar 

  13. C. Mu, Y. Song, and X. Wang, Mater. Lett. 155, 44 (2015).

    Article  Google Scholar 

  14. M. G. Sousa, A. F. Cunha, P. A. Fernandes, J. P. Teixeira, R. A. Sousa, and J. P. Leitao, Sol. Energy Mater. Sol. Cells 126, 101 (2014).

    Article  Google Scholar 

  15. X. Meng, H. Deng, J. He, L. Sun, P. Yang, and J. Chu, Mater. Lett. 151, 61 (2015).

    Article  Google Scholar 

  16. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97, 35081 (2010).

    Google Scholar 

  17. S. A. Vanalakar, G. L. Agawane, S. W. Shin, M. P. Suryawanshi, K. V. Gurav, K. S. Jeon, P. S. Patil, C. W. Jeong, J. Y. Kim, and J. H. Kim, J. Alloys Compd. 619, 109 (2015).

    Article  Google Scholar 

  18. A. I. Inamdar, S. Lee, K. Y. Jeon, C. H. Lee, S. M. Pawar, R. S. Kalubarme, C. J. Park, H. Im, W. Jung, and H. Kim, Sol. Energy 91, 196 (2013).

    Article  ADS  Google Scholar 

  19. Z. Seboui, A. Gassoumi, and N. Kamoun-Turki, Mater. Sci. Semicond. Process. 26, 360 (2014).

    Article  Google Scholar 

  20. D. B. Khadka and J. H. Kim, J. Phys. Chem. 118, 14227 (2014).

    Google Scholar 

  21. G. Larramona, S. Bourdais, A. Jacob, C. Chone, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Pere, and G. Dennler, J. Phys. Chem. Lett. 21, 3763 (2014).

    Article  Google Scholar 

  22. J. P. Liu, K. L. Choy, M. Placidi, J. Lopez-Garsia, E. Saucedo, and D. Colombara, Phys. Status Solidi A 212, 135 (2015).

    Article  ADS  Google Scholar 

  23. D. B. Khadka, S. Y. Kim, and J. H. Kim, J. Phys. Chem. Lett. 119, 1706 (2015).

    Article  Google Scholar 

  24. H. D. Kim, D. Kim, and C. Park, Mol. Cryst. Liq. Cryst. 564, 155 (2012).

    Article  Google Scholar 

  25. N. M. Shinde, R. J. Deokate, and C. D. Lokhande, J. Anal. Appl. Pyrolysis 100, 12 (2013).

    Article  Google Scholar 

  26. Y. B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, and V. Sundara Raja, Phys. Status Solidi A 206, 1525 (2009).

    Article  ADS  Google Scholar 

  27. M. Adelifard and R. Torkamani, J. Mater. Sci.: Mater. Electron. 26, 3700 (2015).

    Google Scholar 

  28. L. Chen, H. Deng, J. Cui, J. Tao, W. Zhou, and H. Cao, J. Alloys Compd. 627, 388 (2015).

    Article  Google Scholar 

  29. L. Chen, H. Deng, J. Tao, W. Zhou, L. Sun, and F. Yue, J. Alloys Compd. 640, 23 (2015).

    Article  Google Scholar 

  30. V. G. Rajeshmon, M. R. Rajesh Menon, and C. Sudha Kartha, J. Anal. Appl. Pyrolysis 110, 448 (2014).

    Article  Google Scholar 

  31. M. Espindola-Rodriguez, M. Placidi, O. Vigil-Galan, V. Izquierdo-Roca, X. Fontane, and A. Fairbronher, Thin Solid Films 535, 67 (2013).

    Article  ADS  Google Scholar 

  32. O. Vigil-Galan, M. Espindola-Rodriguez, M. Courel, X. Fontane, D. Sylla, and V. Izquierdo-Roca, Sol. Energy Mater. Sol. Cells 117, 246 (2013).

    Article  Google Scholar 

  33. S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 96, 021902 (2010).

    Article  ADS  Google Scholar 

  34. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, Ed. by K. Ito (Wiley, 2015).

  35. Y. Sun, H. Zheng, X. Li, K. Zong, H. Wang, J. Liu, H. Yan, and K. Li, RSC Adv. 3, 22095 (2013).

    Article  Google Scholar 

  36. H. Cui, X. Liu, X. Hao, F. Liu, N. Song, and W. Li, Mater. Res. Soc. Symp. Proc. 1638, 38 (2014).

    Article  Google Scholar 

  37. V. V. Brus, M. N. Solovan, E. V. Maistruk, I. P. Kozyarskii, P. D. Maryanchuk, K. S. Ulyanytsky, and J. Rappich, Phys. Solid State 56, 1947 (2014).

    Article  Google Scholar 

  38. M. N. Solovan, V. V. Brus, P. D. Maryanchuk, T. T. Kovalyuk, J. Rappich, and M. Gluba, Phys. Solid State 55, 2234 (2013).

    Article  ADS  Google Scholar 

  39. J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975).

    Article  ADS  Google Scholar 

  40. G. Baccarani and B. Ricco, J. Appl. Phys. 49, 5565 (1978).

    Article  ADS  Google Scholar 

  41. S. A. Kolosov, Yu. V. Klevkov, and A. F. Plotnikov, Semiconductors 38, 455 (2004).

    Article  ADS  Google Scholar 

  42. O. Vigil-Galán, M. Courel, M. Espindola-Rodriguez, D. Jimenez-Olarte, M. Aguilar-Frutis, and E. Saucedo, Sol. Energy Mater. Sol. Cells 132, 557 (2015).

    Article  Google Scholar 

  43. O. Vigil-Galán, E. Sanchez-Meza, J. Sastre-Hernandez, F. Cruz-Gandarilla, E. Marin, G. Contreras-Puente, E. Saucedo, C. M. Ruiz, M. Tufino-Velazquez, and A. Calderon, Thin Solid Films 516, 3818 (2008).

    Article  ADS  Google Scholar 

  44. B. Maiti, P. Gupta, S. Chaudhuri, and A. K. Pal, Thin Solid Films 239, 104 (1994).

    Article  ADS  Google Scholar 

  45. S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, Moldav. J. Phys. Sci. 8, 173 (2009).

    Google Scholar 

  46. C. H. Seager, J. Appl. Phys. 52, 3960 (1981).

    Article  ADS  Google Scholar 

  47. K. M. Doshchanov, Semiconductors 31, 813 (1997).

    Article  ADS  Google Scholar 

  48. F. Jiang, H. Shen, J. Jin, and W. Wang, J. Electrochem. Soc. 159, H565 (2012).

    Article  Google Scholar 

  49. M. Valdés, G. Santoro, and M. Vázquez, J. Alloys Compd. 585, 776 (2014).

    Article  Google Scholar 

  50. T. Shibuya, Y. Goto, Y. Kamihara, M. Matoba, Y. Yasuoka, L. A. Burton, and A. Walsh, Appl. Phys. Lett. 104, 021912 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Orletskii.

Additional information

Original Russian Text © I.G. Orletskii, P.D. Mar’yanchuk, M.N. Solovan, E.V. Maistruk, D.P. Kozyarskii, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 251–257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orletskii, I.G., Mar’yanchuk, P.D., Solovan, M.N. et al. Electrical and Optical Properties of Cu2Zn(Fe,Mn)SnS4 Films Prepared by Spray Pyrolysis. Tech. Phys. 63, 243–249 (2018). https://doi.org/10.1134/S1063784218020238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020238

Navigation