Skip to main content
Log in

Device for Increasing the Magnetic Flux Pinning in Granular Nanocomposites Based on the High-Temperature Superconducting Ceramic

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A device for modifying the granular high-temperature superconducting ceramics in the plasma of a low-pressure arc discharge has been considered. The particular features of the design and operational principle of this device have been described. The device made it possible to combine the synthesis of that play a role of additional pinning centers and simultaneous deposition of these nanoparticles on microgranules in a single processing cycle. The experimental results on the effect of additional pinning centers on an increase in the critical current thanks to the formation of self-assembled structures in the form of whiskers have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, Nature 414, 368 (2009).

    Article  ADS  Google Scholar 

  2. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, Nat. Mater. 6, 631 (2007).

    Article  ADS  Google Scholar 

  3. V. V. Lennikov, P. E. Kazin, V. I. Putlyaev, Yu. D. Tret’yakov, and M. Jansen, Zh. Obshch. Khim. 41, 911 (1996).

    Google Scholar 

  4. B. P. Mikhailov, P. E. Kazin, V. V. Lennikov, S. V. Shavkin, G. V. Laskova, and A. A. Titov, Inorg. Mater. 37, 636 (2001).

    Article  Google Scholar 

  5. B. P. Mikhailov, G. S. Burkhanov, P. E. Kazin, V. V. Lennikov, S. V. Shavkin, G. V. Laskova, and A. A. Titov, Inorg. Mater. 37, 1199 (2001).

    Article  Google Scholar 

  6. A. V. Ushakov, I. V. Karpov, and A. A. Lepeshev, J. Supercond. Novel Magn. 30, 311 (2017).

    Article  Google Scholar 

  7. A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, L. Yu. Fedorov, and A. A. Shaikhadinov, Tech. Phys. 61, 103 (2016).

    Article  Google Scholar 

  8. A. B. Ushakov, I. V. Karpov, and A. A. Lepeshev, Tech. Phys. 61, 260 (2016).

    Article  Google Scholar 

  9. A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, and M. I. Petrov, J. Appl. Phys. 118, 023907 (2015).

    Article  ADS  Google Scholar 

  10. A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, M. I. Petrov, and L. Yu. Fedorov, JETP Lett. 99, 99 (2014).

    Article  ADS  Google Scholar 

  11. A. V. Ushakov, I. V. Karpov, and A. A. Lepeshev, Phys. Solid State 57, 2320 (2015).

    Article  ADS  Google Scholar 

  12. I. V. Karpov, A. V. Ushakov, A. A. Lepeshev, and S. M. Zharkov, Vacuum 128, 123 (2016).

    Article  ADS  Google Scholar 

  13. A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, and M. I. Petrov, Vacuum 133, 25 (2016).

    Article  ADS  Google Scholar 

  14. I. V. Karpov, A. V. Ushakov, A. A. Lepeshev, and L. Yu. Fedorov, Tech. Phys. 62, 168 (2017).

    Article  Google Scholar 

  15. A. V. Ushakov, I. V. Karpov, A. A. Lepeshev, M. I. Petrov, and L. Yu. Fedorov, Phys. Solid State 57, 919 (2015).

    Article  ADS  Google Scholar 

  16. T. Mochida, N. Chikumoto, and M. Murakami, Phys. Rev. B 62, 1352 (2000).

    Article  ADS  Google Scholar 

  17. T. Yu. Bil’gil’deeva, V. F. Masterov, S. E. Khabarov, A. N. Chursinov, and T. A. Polyanskaya, Sverkhprovodimost: Fiz., Khim., Tekh. 3, 2117 (1990).

    Google Scholar 

  18. B. Maiorov, S. A. Baily, H. Zhou, O. Ugurli, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, Nat. Mater. 8, 398 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Additional information

Original Russian Text © I.V. Karpov, A.V. Ushakov, A.A. Lepeshev, L.Yu. Fedorov, E.A. Dorozhkina, O.N. Karpova, A.A. Shaikhadinov, V.G. Demin, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 238–242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Ushakov, A.V., Lepeshev, A.A. et al. Device for Increasing the Magnetic Flux Pinning in Granular Nanocomposites Based on the High-Temperature Superconducting Ceramic. Tech. Phys. 63, 230–234 (2018). https://doi.org/10.1134/S1063784218020196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020196

Navigation