Skip to main content
Log in

Holographic Subsurface Radar Technique for Nondestructive Testing of Dielectric Structures

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Holographic subsurface radar method is compared with the conventional technology of impulse radars. Basic relationships needed for the reconstruction of complex microwave holograms are presented. Possible applications of the proposed technology are discussed. Diagnostics of polyurethane foam coatings of spacecrafts is used as an example of the efficiency of holographic subsurface radars. Results of reconstruction of complex and amplitude microwave holograms are compared. It is demonstrated that the image quality that results from reconstruction of complex microwave holograms is higher than the image quality obtained with the aid of amplitude holograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Daniels, Ground Penetrating Radar, 2nd ed. (IEE, London, 2004).

    Book  Google Scholar 

  2. M. I. Finkel’shtein, V. I. Karpukhin, A. V. Kutev, and V. N. Metelkin, Ground Penetrating Radar, Ed. by M. I. Finkel’shtein (Radio i Svyaz’, Moscow, 1994).

  3. M. I. Finkel’shtein, V. A. Kutev, and V. P. Zolotarev, The Use of Ground Penetrating Radar in Geotechnical Engineering, Ed. by M. I. Finkel’shtein (Nedra, Moscow, 1986).

  4. L. Nuzzo, G. Alli, R. Guidi, N. Cortesi, A. Sarri, and G. Manacorda, in Proc. 15th Int. Conf. on Ground Penetrating Radar, Brussels, Belgium, 2014, p.969.

  5. S. I. Ivashov, V. I. Makarenkov, V. V. Razevig, V. N. Sablin, A. P. Sheyko, and I. A. Vasiliev, in Proc. 8th Int. Conf. on Ground Penetrating Radar, Gold Coast, Australia, 2000, p.36.

  6. X. J. Song, Y. Su, C. L. Huang, M. Lu, and S. P. Zhu, in Proc. 16th Int. Conf. on Ground Penetrating Radar, Hong Kong, China, 2016. https://doi.org/10.1109/ ICGPR.2016.7572660

  7. V. V. Razevig, S. I. Ivashov, A. P. Sheyko, I. A. Vasilyev, and A. V. Zhuravlev, Prog. Electromagn. Res. Lett. 1, 173 (2008).

    Article  Google Scholar 

  8. S. Ivashov, V. Razevig, I. Vasiliev, T. Bechtel, and L. Capineri, NDT&E Int. 69, 48 (2015).

    Article  Google Scholar 

  9. Federal Communications Commission, Report and Order No. FCC 02-48 (Washington, 2002).

  10. D. J. Johnson, GPR—The Impact of New FCC Regulations (GSSI, 2002).

    Google Scholar 

  11. G. Junkin and A. P. Anderson, in Proc. 16th European Microwave Conf., Dublin, Ireland, 1986, p.720.

  12. G. Junkin and A. P. Anderson, IEE Proc. F 135, 321 (1988).

    Google Scholar 

  13. I. A. Vasiliev, S. I. Ivashov, V. I. Makarenkov, V. N. Sablin, and A. P. Sheyko, IEEE Aerosp. Electron. Syst. Mag. 14 (5), 25 (1999).

    Article  Google Scholar 

  14. S. I. Ivashov, V. V. Razevig, I. A. Vasiliev, A. V. Zhuravlev, T. D. Bechtel, and L. Capineri, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4, 763 (2011).

    Article  Google Scholar 

  15. V. V. Razevig, I. A. Vasil’ev, A. I. Ivashov, S. I. Ivashov, and V. I. Makarenkov, RF Patent No. 2482518 (2013).

  16. V. V. Razevig, S. I. Ivashov, I. A. Vasiliev, A. V. Zhuravlev, T. Bechtel, and L. Capineri, in Proc. XIII Int. Conf. on Ground Penetrating Radar, Lecce, Italy, 2010, p.657.

  17. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

    Google Scholar 

  18. D. M. Sheen, D. L. McMakin, and T. E. Hall, IEEE Trans. Microwave Theory Tech. 49, 1581 (2001).

    Article  ADS  Google Scholar 

  19. V. V. Razevig, A. S. Bugaev, S. I. Ivashov, I. A. Vasil’ev, and A. V. Zhuravlev, Usp. Sovrem. Radioelektron., No. 9, 51 (2010).

    Google Scholar 

  20. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973).

    MATH  Google Scholar 

  21. S. I. Ivashov, V. V. Razevig, T. D. Bechtel, I. A. Vasiliev, L. Capineri, and A. V. Zhuravlev, in Proc. IEEE Int. Conf. on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, 2015, p.1.

  22. T. Lu, C. Snapp, T.-H. Chao, A. Thakoor, T. Bechtel, S. Ivashov, and I. Vasiliev, Proc. SPIE 6555, 65550S1 (2007).

    Article  Google Scholar 

  23. S. Kharkovsky and R. Zoughi, IEEE Instrum. Meas. Mag. 10 (2), 26 (2007).

    Article  Google Scholar 

  24. B. A. Dombrow, Polyurethanes (Reinhold, New York, 1957).

    Google Scholar 

  25. F. Morring, Jr., Aviat. Week Space Technol., 31 (2003).

    Google Scholar 

  26. D. Ya. Sukhanov and K. V. Zav’yalova, Tech. Phys. 57, 819 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Ivashov.

Additional information

Original Russian Text © S.I. Ivashov, A.S. Bugaev, A.V. Zhuravlev, V.V. Razevig, M.A. Chizh, A.I. Ivashov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 268–275.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashov, S.I., Bugaev, A.S., Zhuravlev, A.V. et al. Holographic Subsurface Radar Technique for Nondestructive Testing of Dielectric Structures. Tech. Phys. 63, 260–267 (2018). https://doi.org/10.1134/S1063784218020184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020184

Navigation