Skip to main content
Log in

Prospects for Practical Applications of a Discharge Chemical HF Laser as a Coherent Source for IR Holography

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Preliminary experimental results on recording of phase and amplitude holograms using the radiation of electric-discharge HF lasers are presented, and prospects for applications of such lasers in diagnostics of various objects are discussed. It is shown that lasers with homogeneous working medium may generate coherent radiation with a coherence length of greater than 6 m in the absence of mode selection. Methods for control of spatial distribution of electron concentration in excimer and discharge chemical HF (DF) lasers and distributions of the main combustible components are considered. Deposition of holographic identification marks on artworks is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Zaidel’, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Zh. Tekh. Fiz. 38, 1405 (1968).

    Google Scholar 

  2. G. V. Ostrovskaya, Tech. Phys. 53, 1103 (2008).

    Article  Google Scholar 

  3. P. Acedo, H. Lamela, M. Sanchez, T. Estrada, and J. Sanchez, Rev. Sci. Instrum. 75, 4671 (2004).

    Article  ADS  Google Scholar 

  4. C. E. Thomas, L. R. Baylor, Jr., S. K. Combs, S. J. Meitner, D. A. Rasmussen, E. M. Granstedt, R. P. Majeski, and R. Kaita, Rev. Sci. Instrum. 81, 527 (2010).

    Google Scholar 

  5. M. P. Georges, J. F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, Appl. Opt. 52, 102 (2013).

    Article  Google Scholar 

  6. I. Alexeenko, J. F. Vandenrijt, M. Georges, G. Pedrini, T. Cedric, W. Osten, and B. Vollheim, Appl. Mech. Mater. 24–25, 147 (2010).

    Article  Google Scholar 

  7. V. Tornari, E. Bernikola, W. Osten, R. M. Groves, G. Marc, G. M. Hustinx, and S. Hackney, Proc. SPIE 6618, 715 (2007).

    Google Scholar 

  8. W. Braun, Phys. Lett. A 47, 144 (1974).

    Article  ADS  Google Scholar 

  9. R. Kristal, Appl. Opt. 14, 628 (1975).

    Article  ADS  Google Scholar 

  10. W. W. Braun, Opt. Eng. 14, 208 (1975).

    Article  ADS  Google Scholar 

  11. V. A. Burtsev, V. M. Vodovozov, P. N. Dashuk, S. L. Kulakov, V. F. Prokopenko, V. M. Fomin, and L. L. Chelnokov, in Proc. II All-Union Conf. on the Physics of Electrical Breakdown of Gases, Tartu, 1984, p.414.

  12. P. N. Dashuk and S. L. Kulakov, Pis’ma Zh. Tekh. Fiz. 7, 853 (1981).

    Google Scholar 

  13. V. A. Burtsev, L. A. Zelenov, I. L. Kamardin, R. F. Kurunov, A. A. Kuchinskii, V. K. Ratkevich, V. A. Rodichkin, V. G. Smirnov, and B. F. Shanskii, Sov. J. Quantum Electron. 18, 107 (1988).

    Article  ADS  Google Scholar 

  14. V. A. Burtsev, M. V. Bezgreshnov, K. I. Finkel’shtein, and V. M. Fomin, in Proc. All-Union Conf. “Physics and Conversion,” Kaliningrad, 1991, p.161.

  15. T. N. Vadkovskaya, Yu. A. Drozhbin, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, and V. V. Trofimenko, Sov. J. Quantum Electron. 18, 144 (1988).

    Article  ADS  Google Scholar 

  16. L. A. Kartuzhanskii, I. F. Mishunin, and V. A. Tsentrovskii, Ukr. Fiz. Zh. 23, 267 (1978).

    Google Scholar 

  17. T. B. Gorlin, L. G. Paritskii, and T. V. Tisnek, Zh. Tekh. Fiz. 57, 159 (1987).

    Google Scholar 

  18. V. V. Apollonov, S. Yu. Kazantsev, V. F. Oreshkin, and K. N. Firsov, Quantum Electron. 28, 116 (1998).

    Article  ADS  Google Scholar 

  19. V. D. Bulaev, V. S. Gusev, S. Yu. Kazantsev, I. G. Kononov, S. L. Lysenko, Yu. B. Morozov, A. N. Poznyshev, and K. N. Firsov, Quantum Electron. 40, 615 (2010).

    Article  ADS  Google Scholar 

  20. A. N. Panchenko and V. F. Tarasenko, Tech. Phys. Lett. 30, 454 (2004).

    Article  ADS  Google Scholar 

  21. E. A. Klimuk, K. A. Kutumov, and G. A. Troshchinenko, Quantum Electron. 40, 103 (2010).

    Article  ADS  Google Scholar 

  22. V. D. Bochkov, S. Yu. Kazantsev, I. G. Kononov, and S. V. Podlesnikh, in Proc. VIII Int. Conf. on Plasma Physics and Plasma Technology, Minsk, 2015, Vol. 2, p.459.

  23. E. P. Bel’kov, P. N. Dashuk, G. L. Spichkin, and V. M. Fomin, Pis’ma Zh. Tekh. Fiz. 12, 278 (1986).

    Google Scholar 

  24. A. V. Eletskii, Sov. Phys. Usp. 21, 502 (1978).

    Article  ADS  Google Scholar 

  25. Yu. I. Bychkov, S. A. Yampol’skaya, and A. G. Yastremskii, Quantum Electron. 40, 28 (2010).

    Article  ADS  Google Scholar 

  26. A. De Angelis, P. Lazzaro, F. Garosi, G. Giordano, and T. Letardi, Appl. Phys. B 47, 1 (1988).

    Article  ADS  Google Scholar 

  27. Yu. I. Bychkov, S. L. Gorchakov, and A. G. Yastremskii, Quantum Electron. 30, 733 (2000).

    Article  ADS  Google Scholar 

  28. J. L. Lyman, Appl. Opt. 12, 2736 (1973).

    Article  ADS  Google Scholar 

  29. C. P. Arnold and R. G. Wenzel, IEEE J. Quantum Electron. 9, 491 (1973).

    Article  ADS  Google Scholar 

  30. G. V. Ostrovskaya and A. N. Zaidel, Phys. Lett. A 26, 393 (1968).

    Article  ADS  Google Scholar 

  31. G. Kruger, Appl. Opt. 21, 2841 (1982).

    Article  ADS  Google Scholar 

  32. S. D. Velikanov, A. S. Elugin, E. A. Kudryashov, I. N. Pegoev, S. N. Sin’kov, and Yu. I. Frolov, Quantum Electron. 27, 273 (1997).

    Article  ADS  Google Scholar 

  33. N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Dainty, P. J. M. Parmiter, and T. J. Hall, Appl. Opt. 35, 6304 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Fomin.

Additional information

Original Russian Text © O.G. Fedotov, V.M. Fomin, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 258–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, O.G., Fomin, V.M. Prospects for Practical Applications of a Discharge Chemical HF Laser as a Coherent Source for IR Holography. Tech. Phys. 63, 250–256 (2018). https://doi.org/10.1134/S1063784218020135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020135

Navigation