Skip to main content
Log in

Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon–Nickel Plasma Flow

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core–carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon–oxygen flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Belov, I. A. Golubeva, and S. A. Nizova, Ecology of the Production of Chemicals from Oil and Gas Hydrocarbons (Khimiya, Moscow, 1991).

    Google Scholar 

  2. Catalyst Technology, Ed. by I. P. Mukhlenov (Khimiya, Leningrad, 1989).

  3. E. A. Petrakovskaya, N. V. Bulina, G. N. Churilov, and A. P. Puzyr’, Tech. Phys. 46, 42 (2001).

    Article  Google Scholar 

  4. N. V. Bulina, V. A. Lopatin, N. G. Vnukova, I. V. Osipova, and G. N. Churilov, Fullerenes, Nanotubes, Carbon Nanostruct. 15, 395 (2007).

    Article  ADS  Google Scholar 

  5. N. P. Lyakishev, State Diagrams of Binary Metallic Systems (Mashinostroenie, Moscow, 1996).

    Google Scholar 

  6. G. N. Churilov, A. Ya. Korets, and Ya. N. Titarenko, Zh. Tekh. Fiz. 66, 191 (1996).

    Google Scholar 

  7. G. N. Churilov, O. A. Bayukov, E. A. Petrakovskaya, A. Ya. Korets, V. G. Isakova, and Ya. N. Titarenko, Tech. Phys. 42, 1111 (1997).

    Article  Google Scholar 

  8. H. S. Chen, A. R. Kortan, R. C. Haddon, and D. A. Fleming, J. Phys. Chem. 96, 1016 (1992).

    Article  Google Scholar 

  9. Y.-C. Hsieh, Y.-C. Chou, C.-P. Lin, T.-F. Hsieh, and C.-M. Shu, Aerosol Air Qual. Res. 10, 212 (2010).

    Google Scholar 

  10. M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. St. C. Smart, Surf. Interface Anal. 41, 324 (2009).

    Article  Google Scholar 

  11. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, L. A. R. Gerson, and R. St. C. Smart, Appl. Surf. Sci. 257, 2717 (2011).

    Article  ADS  Google Scholar 

  12. B. P. Payne, M. C. Biesinger, and N. S. McIntyre, J. Electron Spectrosc. Relat. Phenom. 185, 159 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Churilov.

Additional information

Original Russian Text © G.N. Churilov, N.S. Nikolaev, A.V. Cherepakhin, A.I. Dudnik, E.V. Tomashevich, M.V. Trenikhin, N.G. Bulina, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 224–227.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churilov, G.N., Nikolaev, N.S., Cherepakhin, A.V. et al. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon–Nickel Plasma Flow. Tech. Phys. 63, 216–219 (2018). https://doi.org/10.1134/S1063784218020093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020093

Navigation