Skip to main content
Log in

Effect of Longitudinal Magnetic Field on the Spread of Erosion Laser Plasma in Vacuum and Generation of Plasma Magnetic Fields

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Dynamics of erosion laser plasma in vacuum and generation of magnetic field by moving plasma (in particular, in the presence of external static magnetic field oriented along the direction of plasma motion) are experimentally studied. Radial confinement of the spread of plasma, a decrease in the electrification of target upon plasma formation, and an increase in the induction of the plasma magnetic field by a factor of 10–15 are revealed at an induction of the external magnetic field of about 0.35 T. Dependences of the induction of the plasma magnetic field on the power density of the laser radiation are determined for the above regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. O. Ustyugov and S. D. Ustyugov, Math. Models Comput. Simul. 2, 362 (2010).

    Article  MathSciNet  Google Scholar 

  2. R. Amitava, E. Akira, and M. Tomas, IEEE Trans. Plasma Sci. 44, 574 (2016).

    Article  Google Scholar 

  3. T. Pisarczyk, B. A. Bryunetkin, A. Ya. Faenov, A. Farynski, H. Fiedorowicz, M. O. Koshevoy, R. Miklaszewski, M. Mroczkowski, M. V. Osipov, P. Parys, I. Yu. Skobelev, and M. Szczurek, Phys. Scr. 50, 72 (1994).

    Article  ADS  Google Scholar 

  4. B. A. Remington, R. P. Drake, and O. O. Ryutov, Rev. Mod. Phys. 78, 755 (2006).

    Article  ADS  Google Scholar 

  5. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  6. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, J. Appl. Phys. 100, 053303 (2006).

    Article  ADS  Google Scholar 

  7. C. Ye, G. J. Cheng, S. Tao, and B. Wu, J. Manuf. Sci. Eng. 135, 061020 (2013).

    Article  Google Scholar 

  8. T. M. York, B. A. Jacoby, and P. Mikellides, J. Propul. Power 8, 1023 (1992).

    Article  ADS  Google Scholar 

  9. M. Inutake, A. Ando, K. Hattori, H. Tobari, and T. Yagai, J. Plasma Fusion Res. 78, 1352 (2002).

    Article  ADS  Google Scholar 

  10. M. Merino and E. Ahedo, Phys. Plasmas 17, 073501 (2010).

    Article  ADS  Google Scholar 

  11. M. Merino and E. Ahedo, Plasma Sources Sci. Technol. 25, 040512 (2016).

    Article  Google Scholar 

  12. A. N. Chumakov and P. V. Chekan, Quantum Electron. 45, 224 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Chekan.

Additional information

Original Russian Text © A.N. Chumakov, P.V. Chekan, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 63, No. 2, pp. 265–267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, A.N., Chekan, P.V. Effect of Longitudinal Magnetic Field on the Spread of Erosion Laser Plasma in Vacuum and Generation of Plasma Magnetic Fields. Tech. Phys. 63, 257–259 (2018). https://doi.org/10.1134/S1063784218020081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218020081

Navigation