Technical Physics

, Volume 62, Issue 10, pp 1538–1544 | Cite as

Formation of nickel magnetic nanoparticles and modification of nickel phthalocyanine matrix by sodium doping

  • N. A. Kolpacheva
  • M. V. Avramenko
  • L. A. Avakyan
  • Ya. V. Zubavichus
  • A. A. Mirzakhanyan
  • A. S. Manukyan
  • E. G. Sharoyan
  • L. A. BugaevEmail author
Physical Science of Materials


Data for the vapor-phase doping (300°C) of nickel phthalocyanine (NiPc) by sodium taken in different concentrations (x), as well as structural analysis data for Na x = 0.2NiPc, Na x = 1NiPc, and Na x = 3NiPc samples, have been reported. The structure of the samples and their atomic configuration versus the doping level have been studied by transmission electron microscopy, Raman scattering, X-ray diffraction, X-ray absorption spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The structural parameters of Ni–N, Ni–C, and Ni–Ni bonds have been determined, and it has been found that, at a low level of doping by sodium, local structural distortions are observed in some molecules of the NiPc matrix near nickel atoms. The fraction of these molecules grows as the doping level rises from x = 0.2 to x = 1.0. It has been shown that doping changes the oscillation mode of light atoms, which indicates a rise in the electron concentration on five- and six-membered rings. At a high level of sodium doping (x = 3.0), nickel nanoparticles with a mean size of 20 nm and molecule decomposition products have been observed in the NiPc matrix. It has been found that the fraction of nickel atoms in the Na x = 3NiPc nanoparticles as estimated from EXAFS data is sufficient for the room-temperature magnetic properties of the samples to persist for a long time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Aiken III and R. G. Finke, J. Mol. Catal. A: Chem. 145, 1 (1999).CrossRefGoogle Scholar
  2. 2.
    R. Reisfeld, T. Saraidarov, and V. Levchenko, Opt. Appl. 38, 83 (2008).Google Scholar
  3. 3.
    C.-J. Jia and F. Schuth, Phys. Chem. Chem. Phys. 13, 2457 (2011).CrossRefGoogle Scholar
  4. 4.
    C.-X. Liu, Q. Liu, C.-C. Guo, and Z. Tan, J. Porphyrins Phthalocyanines 14, 825 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Idowu and T. Nyokong, Int. J. Nanosci. 11, 1250018 (2012).CrossRefGoogle Scholar
  6. 6.
    J. G. Guan, W. Wang, R. Z. Gong, R. Z. Yuan, L. H. Gan, and K. C. Tam, Langmuir 18, 4198 (2002).CrossRefGoogle Scholar
  7. 7.
    B. Brauer, Y. Vaynzof, W. Zhao, A. Kahn, W. Li, D. R. T. Zahn, C. de Julian Fernandez, C. Sangregorio, and G. J. Salvan, J. Phys. Chem. 113, 4565 (2009).CrossRefGoogle Scholar
  8. 8.
    R. E. Schaak, A. K. Sra, B. M. Leonard, R. E. Cable, J. C. Bauer, Y.-F. Han, J. Means, W. Teizer, Y. Vasquez, and E. S. Funck, J. Am. Chem. Soc. 127, 3506 (2005).CrossRefGoogle Scholar
  9. 9.
    F. Li, X. Yu, H. Pan, M. Wang, and X. Xin, Solid State Sci. 2, 767 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Kolpacheva, L. A. Avakyan, A. S. Manukyan, A. A. Mirzakhanyan, E. G. Sharoyan, V. V. Pryadchenko, Ya. V. Zubavichus, A. L. Trigub, A. G. Fedorenko, and L. A. Bugaev, Phys. Solid State 58, 1004 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    S. Zhou, Y. Li, Z. Chen, X. X. Li, N. Chen, and G. Du, Ceram. Int. 39, 6763 (2013).CrossRefGoogle Scholar
  12. 12.
    L. Grigoryan, M. Simonyan, and E. Sharoyan, SU Patent No. 120686 (1984).Google Scholar
  13. 13.
    J. M. Robertson and I. Woodward, J. Chem. Soc. 36, 219 (1937).CrossRefGoogle Scholar
  14. 14.
    A. V. Chichagov, D. A. Varlamov, R. A. Dilanyan, T. N. Dokina, N. A. Drozhzhina, O. L. Samokhvalova, and T. V. Ushakovskaya, Crystallogr. Rep. 46, 876 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Pryadchenko, V. V. Srabionyan, E. B. Mikheykina, L. A. Avakyan, V. Y. Murzin, Y. V. Zubavichus, I. Zizak, V. E. Guterman, and L. A. Bugaev, J. Phys. Chem. C 119, 3217 (2015).CrossRefGoogle Scholar
  16. 16.
    V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, A. V. Makhiboroda, E. B. Rusakova, L. A. Avakyan, R. Schneider, M. Dubiel, and L. A. Bugaev, J. Non- Cryst. Solids 382, 24 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Phys. B (Amsterdam, Neth.) 208–209, 154 (1995).CrossRefGoogle Scholar
  18. 18.
    D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, and D. E. Ramaker, Top. Catal. 10, 143 (2000).CrossRefGoogle Scholar
  19. 19.
    A. V. Poiarkova and J. J. Rehr, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 948 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    C. A. Melendres and V. A. Maroni, J. Raman Spectrosc. 15, 319 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    T. V. Basova, B. A. Kolesov, A. G. Gürek, and V. Ahsen, Thin Solid Films 385, 246 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    I. V. Aleksandrov, Ya. S. Bobovich, V. G. Maslov, and A. N. Sidorov, Opt. Spektrosk. 37, 467 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Kolpacheva
    • 1
    • 4
  • M. V. Avramenko
    • 1
  • L. A. Avakyan
    • 1
  • Ya. V. Zubavichus
    • 2
  • A. A. Mirzakhanyan
    • 3
  • A. S. Manukyan
    • 3
  • E. G. Sharoyan
    • 3
  • L. A. Bugaev
    • 1
    Email author
  1. 1.Sothern Federal UniversityRostov-on-DonRussia
  2. 2.National Scientific Center Kurchatov InstituteMoscowRussia
  3. 3.Institute of Physical ResearchNational Academy of Sciences of ArmeniaAshtarakArmenia
  4. 4.Don State Technical UniversityRostov-on-DonRussia

Personalised recommendations