Skip to main content
Log in

Liquid-metal field electron source based on porous GaP

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have reported on a new method for obtaining a liquid-metal field emitter. The treatment of a porous crystal of GaP binary semiconducting compound with high-voltage pulses in a vacuum has made it possible to obtain stable structures on its surface in the form of discrete gallium clusters. These structures exhibit high emission properties, including stable currents at a level of a few microamperes, as well as the high uniformity of the distribution of emission nanocenters over the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mesyats, Generation of Intense Nanosecond Pulses (Sovetskoe Radio, Moscow, 1974).

    Google Scholar 

  2. E. A. Litvinov, Soros. Obraz. Zh., No. 6, 100 (1998).

    Google Scholar 

  3. E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskii, Sov. Phys. Usp. 26, 138 (1983).

    Article  ADS  Google Scholar 

  4. A. A. Rukhadze, L. S. Bogdankevich, S. E. Rosinskii, and V. G. Rukhlin, High-Current Relativistic Electron Beam Physics (Lenard URSS, Moscow, 2016).

    Google Scholar 

  5. R. J. Parmee, C. M. Collins, W. I. Milne, and M. T. Cole, Nano Convergence 2, 1 (2015).

    Article  Google Scholar 

  6. G. G. Sominskii and T. A. Tumareva, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 17 (3), 17 (2009).

    Google Scholar 

  7. G. N. Fursey, Autoelectronic Emission (Lan’, St. Petersburg, 2012).

    Google Scholar 

  8. A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, and D. Pavlidis, Vacuum Nanoelectronic Devices: Novel Electron Sources and Applications (Wiley, Chichester, 2015).

    Book  Google Scholar 

  9. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

    Article  ADS  Google Scholar 

  10. R. Z. Zhan, J. Chen, S. Z. Deng, and N. S. Xu, J. Vac. Sci. Technol. 28, 558 (2010).

    Article  Google Scholar 

  11. D. Chen, X. Song, Z. Zhang, Z. Li, J. She, S. Deng, N. Xu, and J. Chen, Appl. Phys. Lett. 107, 243105 (2015).

    Article  ADS  Google Scholar 

  12. L. A. Ma, Z. X. Lin, J. Y. Lin, Y. A. Zhang, L. Q. Hu, and T. L. Guo, Phys. E 41, 1500 (2009).

    Article  Google Scholar 

  13. Y. Saito, Carbon Nanotube and Related Field Emitters (Wiley-VCH, Weinheim, 2010).

    Book  Google Scholar 

  14. A. V. Eletskii, Phys.-Usp. 53, 863 (2010).

    Article  ADS  Google Scholar 

  15. H. Machida, S. Honda, S. Fujii, K. Himuro, H. Kawai, K. Ishida, K. Oura, and M. Katayama, Jpn. J. Appl. Phys. 46, 867 (2007).

    Article  ADS  Google Scholar 

  16. G. N. Fursey, L. A. Shirochin, and L. M. Baskin, J. Vac. Sci. Technol. 15, 410 (1997).

    Article  Google Scholar 

  17. J. Mitterauer, Appl. Surf. Sci. 87/88, 79 (1995).

    Article  ADS  Google Scholar 

  18. L. I. Pranevichus, G. N. Fursey, A. D. Lebedev, and I. Yu. Bartashyus, SU Inventor’s Certificate No. 342242 (1972).

    Google Scholar 

  19. L. A. Shirochin, Doctoral Dissertation in Mathematics and Physics (St. Petersburg, 2004).

    Google Scholar 

  20. O. P. Korovin, E. O. Popov, V. N. Shrednik, and S. S. Karatetskii, Tech. Phys. Lett. 25, 310 (1999).

    Article  ADS  Google Scholar 

  21. E. O. Popov, A. G. Kolos’ko, S. V. Filippov, P. A. Romanov, and I. L. Fedichkin, Nanomater. Nanostrukt. XXI Vek, No. 1, 14 (2016).

    Google Scholar 

  22. V. P. Ulin and S. G. Konnikov, Semiconductors 41, 832 (2007).

    Article  ADS  Google Scholar 

  23. G. A. Mesyats, Ectons in Vacuum Discharge: Breakdown, Spark, Arc. Part I (Nauka, Moscow, 2000).

    Google Scholar 

  24. S. A. Masalov, A. V. Atrashchenko, V. P. Ulin, E. O. Popov, A. G. Kolos’ko, and S. V. Filippov, Tech. Phys. Lett. 42, 1118 (2016).

    Article  ADS  Google Scholar 

  25. T. K. Kundu and J. Ya-Min Lee, Ferroelectrics 328, 53 (2005).

    Article  Google Scholar 

  26. A. I. Grigor’ev and S. O. Shiryaeva, Zh. Tekh. Fiz. 57, 1706 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Masalov.

Additional information

Original Russian Text © S.A. Masalov, E.O. Popov, A.G. Kolos’ko, S.V. Filippov, V.P. Ulin, V.P. Evtikhiev, A.V. Atrashchenko, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 9, pp. 1416–1422.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masalov, S.A., Popov, E.O., Kolos’ko, A.G. et al. Liquid-metal field electron source based on porous GaP. Tech. Phys. 62, 1424–1430 (2017). https://doi.org/10.1134/S1063784217090171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217090171

Navigation