Skip to main content
Log in

Spinodal decomposition of tungsten-containing phases in functional coatings obtained via high-energy implantation processes

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have studied structural and phase transformations in tungsten-containing functional coatings of carbon steels obtained during the high-energy processes of implanting tungsten carbide micropowders by the method of complex pulse electromechanical processing and micropowders of tungsten by technology of directed energy of explosion based on the effect of superdeep penetration of solid particles (Usherenko effect). It has been shown that, during thermomechanical action, intensive steel austenization occurs in the deformation zone with the dissolution of tungsten carbide powder, the carbidization of tungsten powder, and the subsequent formation of composite gradient structures as a result of the decay of supercooled austenite supersaturated by tungsten according to the diffusion mechanism and the mechanism of spinodal decomposition. Separate zones of tungsten-containing phases of the alloy are in the liquid-phase state, as well as undergo spinodal decomposition with the formation of highly disperse carbide phases of globular morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Kheifets, Naukoemkie Tekhnol. Mashinostr., No. 4, 3 (2016).

    Google Scholar 

  2. S. N. Grigor’ev and T. V. Tarasova, Met. Sci. Heat Treat. 57, 579 (2016).

    Article  ADS  Google Scholar 

  3. A. O. Gorlenko, Vestn. Belgorod. Gos. Tekhnol. Univ., No. 3, 4 (2011).

    Google Scholar 

  4. A. O. Gorlenko and O. A. Gorlenko, Naukoemkie Tekhnol. Mashinostr., No. 6, 21 (2011).

    Google Scholar 

  5. S. V. Davydov, A. O. Gorlenko, V. M. Skantsev, and M. Yu. Kurakin, Met. Sci. Heat Treat. 56, 274 (2014).

    Article  ADS  Google Scholar 

  6. S. M. Usherenko, J. Eng. Phys. Thermophys. 75, 753 (2002).

    Article  Google Scholar 

  7. O. V. Roman, S. K. Andilevko, S. S. Karpenko, G. S. Romanov, and V. A. Shilkin, J. Eng. Phys. Thermophys. 75, 997 (2002).

    Article  Google Scholar 

  8. R. G. Kirsanov, E. V. Petrov, and A. L. Krivchenko, Deform. Razrushenie Mater., No. 6, 43 (2010).

    Google Scholar 

  9. R. G. Kirsanov, A. L. Krivchenko, E. V. Petrov, and D. V. Isaev, Fiz. Khim. Obrab. Mater., No. 6, 46 (2008).

    Google Scholar 

  10. V. P. Skripov and A. V. Skripov, Sov. Phys. Usp. 22, 389 (1979).

    Article  ADS  Google Scholar 

  11. G. L. Krasko and B. Ya. Lyubov, Fiz. Met. Metalloved. 11, 186 (1961).

    Google Scholar 

  12. V. S. Leonov, Cold Fusion in the Usherenko Effect and Its Use in Power Engineering (Agrokonsalt, Moscow, 2001).

    Google Scholar 

  13. E. Roduner, Nanoscopic Materials: Size-Dependent Phenomena (RSC Publ., 2006).

    Google Scholar 

  14. N. F. Bunkin, A. V. Lobeev, and G. A. Lyakhov, Phys.- Usp. 40, 1019 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Davydov.

Additional information

Original Russian Text © S.V. Davydov, E.V. Petrov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 8, pp. 1195–1201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.V., Petrov, E.V. Spinodal decomposition of tungsten-containing phases in functional coatings obtained via high-energy implantation processes. Tech. Phys. 62, 1207–1213 (2017). https://doi.org/10.1134/S1063784217080060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217080060

Navigation