Skip to main content
Log in

Landauer–Datta–Lundstrom model for terahertz transistor amplifier based on graphene

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A transistor has been considered in the form of three electrodes connected by graphene ribbons or by metal quantum wires (nanowires) that operate on the principle of the current control by the changing voltage at the central electrode (gate). The analysis has been carried out according to the Landauer–Datta–Lundstrom model in equilibrium approximation for electrodes while fixing their potentials. We have obtained linear models and nonlinear terms in the determining current, and calculated the nonlinear current–voltage performances of graphene nanoribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  4. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 (2007).

    Article  ADS  Google Scholar 

  5. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  ADS  Google Scholar 

  6. Z. Chen, Yu-M. Lin, M. J. Rooks, and P. Avouris, Phys. E 40, 228 (2007).

    Article  Google Scholar 

  7. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Article  ADS  Google Scholar 

  8. D. A. Svintsov, V. V. Vyurkov, V. F. Lukichev, A. A. Orlikovsky, A. Burenkov, and R. Oechsner, Semiconductors 47, 279 (2013).

    Article  ADS  Google Scholar 

  9. G. Liu, S. Ahsan, A. G. Khitun, R. K. Lake, and A. A. Balandin, J. Appl. Phys. 114, 154310 (2013).

  10. F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).

    Article  ADS  Google Scholar 

  11. T. Ragheb and Y. Massoud, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose, CA, 2008, p. 593.

    Google Scholar 

  12. M. Lundstrom and C. Jeong, Near-Equilibrium Transport: Fundamentals and Applications (World Scientific, Hackensack, NJ, 2013).

    Book  MATH  Google Scholar 

  13. Yu. A. Kruglyak, Nanosist., Nanomater., Nanotekhnol. 11, 519 (2013).

    Google Scholar 

  14. Yu. Kruglyak, J. Nanosci. 2014, 725420 (2014).

    Article  Google Scholar 

  15. Yu. A. Kruglyak, ScienceRise 7 (2), 76 (2015).

    Article  MathSciNet  Google Scholar 

  16. Yu. A. Kruglyak, ScienceRise 2 (2), 93 (2015).

    Article  MathSciNet  Google Scholar 

  17. G. Ya. Slepyan, S. A. Maksimenko, L. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, Phys. Rev. B 60, 17136 (1999).

    Article  ADS  Google Scholar 

  18. G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).

    Article  ADS  Google Scholar 

  19. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys.: Condens. Matter 19, 026222 (2007).

    ADS  Google Scholar 

  20. L. A. Falkovsky and S. S. Pershoguba, Phys. Rev. B 76, 153410 (2007).

    Article  ADS  Google Scholar 

  21. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007).

    Article  ADS  Google Scholar 

  22. V. P. Gusynin and S. G. Sharapov, Phys. Rev. B 73, 245411 (2006).

    Article  ADS  Google Scholar 

  23. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. Lett. 96, 256802 (2006).

    Article  ADS  Google Scholar 

  24. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006).

    Article  ADS  Google Scholar 

  25. N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73, 195411 (2006).

    Article  ADS  Google Scholar 

  26. K. Ziegler, Phys. Rev. B 75, 233407 (2007).

    Article  ADS  Google Scholar 

  27. L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).

    Article  ADS  Google Scholar 

  28. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, Phys. Rev. B 87, 115429 (2013).

    Article  ADS  Google Scholar 

  29. D. Berdebes, T. Low, and M. Lundstrom, Lecture Notes on Low Bias Transport in Graphene: An Introduction (Purdue Univ., 2009). http://nanohub.org/resources /7435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Original Russian Text © M.V. Davidovich, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 8, pp. 1206–1215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. Landauer–Datta–Lundstrom model for terahertz transistor amplifier based on graphene. Tech. Phys. 62, 1218–1227 (2017). https://doi.org/10.1134/S1063784217080059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217080059

Navigation