Skip to main content
Log in

Model calculating high-speed collisions between bodies with different shapes and massive metallic obstacles

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The mathematical model of a high-speed collision between bodies with arbitrary elongation and massive metallic obstacles has been suggested. The model is based on the energy balance and stage-by-stage scheme of formation of a crater. The collision process has been considered to be the quasi-stationary penetration of the deformed impactor and inertial deepening of a crater at the final step. A comparison of the calculations with the results of numerical simulations and physical experiment has shown satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Wilkins, Computer Simulation of Dynamic Phenomena (Springer, 1999).

    Book  MATH  Google Scholar 

  2. J. A. Zukas and S. B. Segletes, Adv. Eng. Software 14, 77 (1992).

    Article  Google Scholar 

  3. R. T. Sedgwick, L. J. Hageman, R. G. Herrmann, and J. L. Waddell, Int. J. Eng. Sci. 16, 859 (1978).

    Article  Google Scholar 

  4. W. E. Johnson and C. E. Anderson, Jr., Int. J. Impact Eng. 5, 429 (1987).

    Google Scholar 

  5. A. V. Babkin, V. I. Kolpakov, V. N. Okhitin, and V. V. Selivanov, Numerical Methods in High-Speed Process Physics (Mos. Gos. Tekh. Univ., Moscow, 2006).

    Google Scholar 

  6. C. E. Anderson, Jr., D. L. Littlefield, and J. D. Walker, Int. J. Impact Eng. 11, 1 (1991).

    Article  Google Scholar 

  7. D. R. Christman and J. W. Gehring, J. Appl. Phys. 37, 1579 (1966).

    Article  ADS  Google Scholar 

  8. V. P. Alekseevskii, Combust., Explos. Shock Waves 2 (2), 63 (1966).

    Article  MathSciNet  Google Scholar 

  9. A. Tate, J. Mech. Phys. Solids 15, 387 (1967).

    Article  ADS  Google Scholar 

  10. A. Tate, J. Mech. Phys. Solids 17, 141 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Perez, Sci. Tech. Armement 56, 1 (1982).

    Google Scholar 

  12. S. E. Jones, P. P. Gillis, and J. C. Foster, Jr., J. Mech. Phys. Solids 35, 121 (1987).

    Article  ADS  Google Scholar 

  13. S. E. Jones, J. W. House, L. L. Wilson, and J. D. Cinnamon, Int. J. Impact Eng. 12, 145 (1992).

    Article  Google Scholar 

  14. D. Yaziv and J. P. Riegel, Int. J. Impact Eng. 14, 843 (1993).

    Article  Google Scholar 

  15. V. K. Luk and A. J. Piekutowsli, Int. J. Impact Eng. 11, 323 (1993).

    Article  Google Scholar 

  16. I. V. Roisman, A. L. Yarin, and M. B. Rubin, Int. J. Impact Eng. 25, 573 (2002).

    Article  Google Scholar 

  17. M. B. Rubin and A. L. Yarin, Int. J. Impact Eng. 27, 387 (2002).

    Article  Google Scholar 

  18. M. R. McHenry, Y. Choo, and D. L. Orphal, Int. J. Impact Eng. 23, 621 (1999).

    Article  Google Scholar 

  19. J. D. Walker, D. J. Grosch, and S. J. Mullin, Int. J. Impact Eng. 17, 903 (1995).

    Article  Google Scholar 

  20. C. E. Anderson, B. L. Morris, and D. L. Littlefield, A Penetration Mechanics Database (Southwest Research Inst., San Antonio, 1990).

    Google Scholar 

  21. G. Olive and O. G. Engel, in Proc. 6th Symp. on Hypervelocity Impact, Cleveland, United States, 1963, Vol. 2, Part 2, p. 337.

    Google Scholar 

  22. C. D. Liles and E. H. Goodman, Particle-Solid Impact Phenomena (United States Air Force, 1962).

    Google Scholar 

  23. L. E. Murr and J. M. Rivas, Int. J. Impact Eng. 15, 785 (1994).

    Article  Google Scholar 

  24. C. J. Hayhurst, H. J. Ranson, D. J. Gardner, and N. K. Birnbaum, Int. J. Impact Eng. 17, 375 (1995).

    Article  Google Scholar 

  25. W. Harrison, C. Loupias, P. Outrebon, and T. Turland, Int. J. Impact Eng. 17, 369 (1995).

    Article  Google Scholar 

  26. V. Hohler and A. Stilp, in Proc. 12th Symp. on Ballistics, San Antonio, United States, 1990, Vol. 3, p. 178.

    Google Scholar 

  27. C. E. Anderson, Jr., J. D. Walker, S. J. Bless, and T. R. Sharron, Int. J. Impact Eng. 17, 13 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vlasov.

Additional information

Original Russian Text © A.S. Vlasov, A.B. Sinani, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 7, pp. 1033–1039.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, A.S., Sinani, A.B. Model calculating high-speed collisions between bodies with different shapes and massive metallic obstacles. Tech. Phys. 62, 1049–1055 (2017). https://doi.org/10.1134/S106378421707026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421707026X

Navigation