Skip to main content
Log in

Air flow control around a cylindrical model induced by a rotating electric arc discharge in an external magnetic field. Part I

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The structure and dynamics of a near-wall gas flow produced by a rotating electric arc discharge in an external magnetic field around a cylindrical model without an incoming flow has been investigated. The electric arc on the model has been produced by a combined electric discharge (low-current rf discharge + high-current pulse-periodic discharge). Permanent magnets with induction B ≈ 0.1 T have been placed inside the cylindrical models. Ring electrodes are arranged on the surface of the model. The structure and dynamics of the near-wall gas flow around the cylindrical model have been investigated using high-speed photography, as well as the shadowgraph and particle image velocimetry (PIV) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. K. Williamson, Annu. Rev. Fluid Mech. 28, 477 (1996).

    Article  ADS  Google Scholar 

  2. H. Schlichting and K. Gersten, Boundary Layer Theory, 8th ed. (Springer, 2000).

    Book  MATH  Google Scholar 

  3. M. M. Zdravkovich, Flow Around Circular Cylinders (Oxford Univ. Press, 1997), Vols. 1–2.

    MATH  Google Scholar 

  4. Springer Handbook of Experimental Fluid Mechanics, Ed. by C. Tropea, A. Yarin, and J. F. Foss (Springer, 2007).

  5. S. F. Hoerner and H. V. Borst, Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift (Hoerner Fluid Dynamics, 1975).

    Google Scholar 

  6. S. Mittal, J. Appl. Mech. 71, 89 (2004).

    Article  ADS  Google Scholar 

  7. N. Thouault, J. S. Breitsamter, J. Seifert, C. Badalamenti, S. A. Prince, and N. A. Adams, in Proc. 27th Congress Int. Council of the Aeronautical Sciences, Nice, France, 2010, p. 2010-3.8.1.

    Google Scholar 

  8. P. T. Tokumaru and P. E. Dimotakis, J. Fluid Mech. 255, 1 (1993).

    Article  ADS  Google Scholar 

  9. S. Carstensen and X. Mandviwalla, J. Ocean Wind Energy 1, 41 (2014).

    Google Scholar 

  10. A. Asrokin, M. R. Ramly, and A. H. Ahmad, in Proc. 2nd Int. Conf. on Mechanical Engineering Research, Pahang, Malaysia, 2013 (IOP Publ., 2015), p. 175.

    Google Scholar 

  11. J. K. Yuan and D. J. Olinger, in Proc. 20th AIAA Applied Aerodynamics Conf., St. Louis, United States, 2002, p. AIAA-2002–3057.

    Google Scholar 

  12. V. A. Biturin, P. N. Kazansky, A. I. Klimov, and I. A. Moralev, in Proc. Joint ERCOFTAC/PLASMAERO Workshop, Toulouse, France, 2012, p. 8.

    Google Scholar 

  13. I. A. Moralev, V. A. Bityurin, P. N. Kasansky, A. I. Klimov, and D. Chertov, in Proc. 42nd AIAA Plasmadynamics and Lasers Conf., Honolulu, United States, 2011, p. AIAA 2011–3733.

    Google Scholar 

  14. P. N. Kazanskyi, A. I. Klimov, and I. A. Moralev, High Temp. 50, 323 (2012).

    Article  Google Scholar 

  15. T. McLaughlin, M. Munska, J. Vaeth, T. Dauwalter, J. Goode, and S. Siegel, in Proc. 2nd AIAA Flow Control Conf., Portland, United States, 2004, p. AIAA 2004–2129.

    Google Scholar 

  16. F. O. Thomas, A. Kozlov, and T. C. Corke, AIAA J. 46, 1921 (2008).

    Article  ADS  Google Scholar 

  17. T. N. Jukes and K. Choi, Phys. Fluids 21, 084103 (2009).

    Article  ADS  Google Scholar 

  18. A. Leroy, J. Podlinski, P. Devinant, and S. Aubrun, presented at 6th European Conf. for Aeronautics and Space Sciences, Krakow, Poland, 2015.

    Google Scholar 

  19. P. N. Kazanskii, Extended Abstract of Candidate’s Dissertation in Engineering (Joint Inst. for High Temperatures, Moscow, 2012).

    Google Scholar 

  20. I. A. Moralev, Extended Abstract of Candidate’s Dissertation in Mathematics and Physics (Joint Inst. for High Temperatures, Moscow, 2010).

    Google Scholar 

  21. A. N. Bocharov, Extended Abstract of Doctoral Dissertation in Mathematics and Physics (Joint Inst. for High Temperatures, Moscow, 2011).

    Google Scholar 

  22. V. A. Bityurin, I. P. Zavershinskii, A. I. Klimov, N. E. Molevich, I. A. Moralev, D. Munhoz, L. A. Polyakov, D. P. Porfir’ev, and S. S. Sugak, High Temp. 54, 599 (2016).

    Article  Google Scholar 

  23. V. Bityurin and A. Bocharov, in Proc. 39th Aerospace Sciences Meeting and Exhibit, Reno, United States, 2001, p. AIAA-2001-0793.

    Google Scholar 

  24. L. Piqueras, D. Henry, D. Jeandel, J. Scott, and J. Wild, Int. J. Heat Mass Transfer 51, 4973 (2008).

    Article  Google Scholar 

  25. J. D. Anderson, Fundamentals of Aerodynamics, 6th ed. (McGraw-Hill, 2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Munkhoz.

Additional information

Original Russian Text © D.S. Munkhoz, V.A. Bityurin, A.I. Klimov, P.N. Kazanskii, I.A. Moralev, L.B. Polyakov, B.N. Tolkunov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 7, pp. 997–1002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munkhoz, D.S., Bityurin, V.A., Klimov, A.I. et al. Air flow control around a cylindrical model induced by a rotating electric arc discharge in an external magnetic field. Part I. Tech. Phys. 62, 1013–1018 (2017). https://doi.org/10.1134/S1063784217070155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217070155

Navigation