Lasing in microdisks with an active region based on lattice-matched InP/AlInAs nanostructures

Abstract

The emissivity of unstrained quantum-dimensional InP/AlInAs nanostructures and their lasing properties in microdisk cavities prepared by wet etching have been studied. For as-prepared structures, it has been found that they radiate owing to quantum-dimensional InP islands 50–300 nm in diameter. At temperatures below 160 K, whispering gallery modes have been observed in the microdisks. Experimental data on the PL intensity for microcavity modes versus the pump power, which were obtained at liquid helium temperature, have made it possible to find the lasing threshold, 50 W/cm2. The half-width of the laser line at above-threshold powers equals 0.06 nm, which corresponds to a Q factor of 15 000.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Gocalinska, M. Manganaro, G. Juska, V. Dimastrodonato, K. Thomas, B. A. Joyce, J. Zhang, D. D. Vvedensky, and E. Pelucchi, Appl. Phys. Lett. 104, 141606 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    A. Gocalinska, M. Manganaro, E. Pelucchi, and D. D. Vvedensky, Phys. Rev. B 86, 165307 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    P. Abraham, M. A. Garcia Perez, T. Benyattou, G. Guillot, M. Sacilotti, and X. Letartre, Semicond. Sci. Technol. 10, 1585 (1995).

    ADS  Article  Google Scholar 

  4. 4.

    N. V. Kryzhanovskaya, A. E. Zhukov, A. M. Nadtochy, I. A. Slovinsky, M. V. Maximov, M. M. Kulagina, A. V. Savelev, E. M. Arakcheeva, Yu. M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, Semiconductors 46, 1040 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    A. E. Zhukov, N. V. Kryzhanovskaya, M. V. Maximov, A. A. Lipovskii, A. V. Savelyev, A. A. Bogdanov, I. I. Shostak, E. I. Moiseev, D. V. Karpov, J. Laukkanen, and J. Tommila, Semiconductors 48, 1626 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Y. Yamamoto, S. Machida, and G. Bjork, Phys. Rev. A 44, 657 (1991).

    ADS  Article  Google Scholar 

  7. 7.

    S. Reitzenstein, C. Bockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, Opt. Express 16, 4849 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Y. Chu, A. M. Mintairov, Y. He, J. L. Merz, N. A. Kalugnyy, V. M. Lantratov, and S. A. Mintairov, Phys. Status Solidi C 8, 325 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    G. Juska, E. Murray, V. Dimastrodonato, T. H. Chung, S. T. Moroni, A. Gocalinska, and E. Pelucchi, J. Appl. Phys. 117, 134302 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    V. Duez, O. Vanbésien, D. Lippens, D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 85, 2202 (1999).

    ADS  Article  Google Scholar 

  12. 12.

    L. C. Pocas, J. L. Duarte, I. F. L. Dias, E. Laureto, S. A. Lourenco, D. O. Toginho Filho, E. A. Meneses, I. Mazzaro, and J. C. Harmand, J. Appl. Phys. 91, 8999 (2002).

    ADS  Article  Google Scholar 

  13. 13.

    S. A. Lourenco, I. F. L. Dias, L. C. Pocas, J. L. Duarte, J. B. B. de Oliveira, and J. C. Harmand, J. Appl. Phys. 93, 4475 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    M. K. Chin, D. Y. Chu, and S. T. Ho, J. Appl. Phys. 75, 3302 (1993).

    ADS  Article  Google Scholar 

  15. 15.

    M. Gorodetskii, Optical Microcavities with a Giant Q-Factor (Fizmatlit, Moscow, 2011).

    Google Scholar 

  16. 16.

    M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, Phys. Rev. B 71, 155306 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    G. Bjork and Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).

    ADS  Article  Google Scholar 

  19. 19.

    J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, Appl. Phys. Lett. 89, 231104 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, Opt. Express 18, 22578 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Y. Zhang, Z. Ma, X. Zhang, T. Wang, and Y. W. Choi, Appl. Phys. Lett. 104, 221106 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    M. Fujita, R. Ushigome, and T. Baba, IEEE Photonics Technol. Lett. 13, 403 (2001).

    ADS  Article  Google Scholar 

  23. 23.

    C. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. A 86, 3903 (2001).

    ADS  Article  Google Scholar 

  24. 24.

    M. Witzany, R. Rossbach, W.-M. Shulz, M. Jetter, and P. Michler, Phys. Rev. B 83, 205305 (2011).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. V. Lebedev.

Additional information

Original Russian Text © D.V. Lebedev, A.M. Mintairov, A.S. Vlasov, V.Yu. Davydov, M.M. Kulagina, S.I. Troshkov, A.A. Bogdanov, A.N. Smirnov, A. Gocalinska, G. Juska, E. Pelucchi, J. Kapaldo, S. Rouvimov, J.L. Merz, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 7, pp. 1066–1070.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lebedev, D.V., Mintairov, A.M., Vlasov, A.S. et al. Lasing in microdisks with an active region based on lattice-matched InP/AlInAs nanostructures. Tech. Phys. 62, 1082–1086 (2017). https://doi.org/10.1134/S1063784217070106

Download citation