Advertisement

Technical Physics

, Volume 62, Issue 7, pp 1082–1086 | Cite as

Lasing in microdisks with an active region based on lattice-matched InP/AlInAs nanostructures

  • D. V. Lebedev
  • A. M. Mintairov
  • A. S. Vlasov
  • V. Yu. Davydov
  • M. M. Kulagina
  • S. I. Troshkov
  • A. A. Bogdanov
  • A. N. Smirnov
  • A. Gocalinska
  • G. Juska
  • E. Pelucchi
  • J. Kapaldo
  • S. Rouvimov
  • J. L. Merz
Solid State Electronics
  • 54 Downloads

Abstract

The emissivity of unstrained quantum-dimensional InP/AlInAs nanostructures and their lasing properties in microdisk cavities prepared by wet etching have been studied. For as-prepared structures, it has been found that they radiate owing to quantum-dimensional InP islands 50–300 nm in diameter. At temperatures below 160 K, whispering gallery modes have been observed in the microdisks. Experimental data on the PL intensity for microcavity modes versus the pump power, which were obtained at liquid helium temperature, have made it possible to find the lasing threshold, 50 W/cm2. The half-width of the laser line at above-threshold powers equals 0.06 nm, which corresponds to a Q factor of 15 000.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gocalinska, M. Manganaro, G. Juska, V. Dimastrodonato, K. Thomas, B. A. Joyce, J. Zhang, D. D. Vvedensky, and E. Pelucchi, Appl. Phys. Lett. 104, 141606 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    A. Gocalinska, M. Manganaro, E. Pelucchi, and D. D. Vvedensky, Phys. Rev. B 86, 165307 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    P. Abraham, M. A. Garcia Perez, T. Benyattou, G. Guillot, M. Sacilotti, and X. Letartre, Semicond. Sci. Technol. 10, 1585 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    N. V. Kryzhanovskaya, A. E. Zhukov, A. M. Nadtochy, I. A. Slovinsky, M. V. Maximov, M. M. Kulagina, A. V. Savelev, E. M. Arakcheeva, Yu. M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, Semiconductors 46, 1040 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    A. E. Zhukov, N. V. Kryzhanovskaya, M. V. Maximov, A. A. Lipovskii, A. V. Savelyev, A. A. Bogdanov, I. I. Shostak, E. I. Moiseev, D. V. Karpov, J. Laukkanen, and J. Tommila, Semiconductors 48, 1626 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Yamamoto, S. Machida, and G. Bjork, Phys. Rev. A 44, 657 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    S. Reitzenstein, C. Bockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, Opt. Express 16, 4849 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Chu, A. M. Mintairov, Y. He, J. L. Merz, N. A. Kalugnyy, V. M. Lantratov, and S. A. Mintairov, Phys. Status Solidi C 8, 325 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    G. Juska, E. Murray, V. Dimastrodonato, T. H. Chung, S. T. Moroni, A. Gocalinska, and E. Pelucchi, J. Appl. Phys. 117, 134302 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. Duez, O. Vanbésien, D. Lippens, D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 85, 2202 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    L. C. Pocas, J. L. Duarte, I. F. L. Dias, E. Laureto, S. A. Lourenco, D. O. Toginho Filho, E. A. Meneses, I. Mazzaro, and J. C. Harmand, J. Appl. Phys. 91, 8999 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Lourenco, I. F. L. Dias, L. C. Pocas, J. L. Duarte, J. B. B. de Oliveira, and J. C. Harmand, J. Appl. Phys. 93, 4475 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    M. K. Chin, D. Y. Chu, and S. T. Ho, J. Appl. Phys. 75, 3302 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    M. Gorodetskii, Optical Microcavities with a Giant Q-Factor (Fizmatlit, Moscow, 2011).Google Scholar
  16. 16.
    M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, Phys. Rev. B 71, 155306 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    G. Bjork and Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, Appl. Phys. Lett. 89, 231104 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, Opt. Express 18, 22578 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Z. Ma, X. Zhang, T. Wang, and Y. W. Choi, Appl. Phys. Lett. 104, 221106 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    M. Fujita, R. Ushigome, and T. Baba, IEEE Photonics Technol. Lett. 13, 403 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    C. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. A 86, 3903 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    M. Witzany, R. Rossbach, W.-M. Shulz, M. Jetter, and P. Michler, Phys. Rev. B 83, 205305 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Lebedev
    • 1
  • A. M. Mintairov
    • 1
    • 2
  • A. S. Vlasov
    • 1
  • V. Yu. Davydov
    • 1
  • M. M. Kulagina
    • 1
  • S. I. Troshkov
    • 1
  • A. A. Bogdanov
    • 1
    • 3
  • A. N. Smirnov
    • 1
  • A. Gocalinska
    • 4
  • G. Juska
    • 4
  • E. Pelucchi
    • 4
  • J. Kapaldo
    • 2
  • S. Rouvimov
    • 2
  • J. L. Merz
    • 2
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.University of Notre DameNotre DameUSA
  3. 3.University of Information Technologies, Mechanics, and Optics (ITMO University)St. PetersburgRussia
  4. 4.Tyndall National InstituteCorkIreland

Personalised recommendations