Skip to main content
Log in

Lasing in microdisks with an active region based on lattice-matched InP/AlInAs nanostructures

  • Solid State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The emissivity of unstrained quantum-dimensional InP/AlInAs nanostructures and their lasing properties in microdisk cavities prepared by wet etching have been studied. For as-prepared structures, it has been found that they radiate owing to quantum-dimensional InP islands 50–300 nm in diameter. At temperatures below 160 K, whispering gallery modes have been observed in the microdisks. Experimental data on the PL intensity for microcavity modes versus the pump power, which were obtained at liquid helium temperature, have made it possible to find the lasing threshold, 50 W/cm2. The half-width of the laser line at above-threshold powers equals 0.06 nm, which corresponds to a Q factor of 15 000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gocalinska, M. Manganaro, G. Juska, V. Dimastrodonato, K. Thomas, B. A. Joyce, J. Zhang, D. D. Vvedensky, and E. Pelucchi, Appl. Phys. Lett. 104, 141606 (2014).

    Article  ADS  Google Scholar 

  2. A. Gocalinska, M. Manganaro, E. Pelucchi, and D. D. Vvedensky, Phys. Rev. B 86, 165307 (2012).

    Article  ADS  Google Scholar 

  3. P. Abraham, M. A. Garcia Perez, T. Benyattou, G. Guillot, M. Sacilotti, and X. Letartre, Semicond. Sci. Technol. 10, 1585 (1995).

    Article  ADS  Google Scholar 

  4. N. V. Kryzhanovskaya, A. E. Zhukov, A. M. Nadtochy, I. A. Slovinsky, M. V. Maximov, M. M. Kulagina, A. V. Savelev, E. M. Arakcheeva, Yu. M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, Semiconductors 46, 1040 (2012).

    Article  ADS  Google Scholar 

  5. A. E. Zhukov, N. V. Kryzhanovskaya, M. V. Maximov, A. A. Lipovskii, A. V. Savelyev, A. A. Bogdanov, I. I. Shostak, E. I. Moiseev, D. V. Karpov, J. Laukkanen, and J. Tommila, Semiconductors 48, 1626 (2014).

    Article  ADS  Google Scholar 

  6. Y. Yamamoto, S. Machida, and G. Bjork, Phys. Rev. A 44, 657 (1991).

    Article  ADS  Google Scholar 

  7. S. Reitzenstein, C. Bockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, Opt. Express 16, 4849 (2008).

    Article  ADS  Google Scholar 

  8. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).

    Article  ADS  Google Scholar 

  9. Y. Chu, A. M. Mintairov, Y. He, J. L. Merz, N. A. Kalugnyy, V. M. Lantratov, and S. A. Mintairov, Phys. Status Solidi C 8, 325 (2011).

    Article  ADS  Google Scholar 

  10. G. Juska, E. Murray, V. Dimastrodonato, T. H. Chung, S. T. Moroni, A. Gocalinska, and E. Pelucchi, J. Appl. Phys. 117, 134302 (2015).

    Article  ADS  Google Scholar 

  11. V. Duez, O. Vanbésien, D. Lippens, D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 85, 2202 (1999).

    Article  ADS  Google Scholar 

  12. L. C. Pocas, J. L. Duarte, I. F. L. Dias, E. Laureto, S. A. Lourenco, D. O. Toginho Filho, E. A. Meneses, I. Mazzaro, and J. C. Harmand, J. Appl. Phys. 91, 8999 (2002).

    Article  ADS  Google Scholar 

  13. S. A. Lourenco, I. F. L. Dias, L. C. Pocas, J. L. Duarte, J. B. B. de Oliveira, and J. C. Harmand, J. Appl. Phys. 93, 4475 (2003).

    Article  ADS  Google Scholar 

  14. M. K. Chin, D. Y. Chu, and S. T. Ho, J. Appl. Phys. 75, 3302 (1993).

    Article  ADS  Google Scholar 

  15. M. Gorodetskii, Optical Microcavities with a Giant Q-Factor (Fizmatlit, Moscow, 2011).

    Google Scholar 

  16. M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).

    Article  ADS  Google Scholar 

  17. W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, Phys. Rev. B 71, 155306 (2015).

    Article  ADS  Google Scholar 

  18. G. Bjork and Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).

    Article  ADS  Google Scholar 

  19. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, Appl. Phys. Lett. 89, 231104 (2006).

    Article  ADS  Google Scholar 

  20. B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, Opt. Express 18, 22578 (2010).

    Article  ADS  Google Scholar 

  21. Y. Zhang, Z. Ma, X. Zhang, T. Wang, and Y. W. Choi, Appl. Phys. Lett. 104, 221106 (2014).

    Article  ADS  Google Scholar 

  22. M. Fujita, R. Ushigome, and T. Baba, IEEE Photonics Technol. Lett. 13, 403 (2001).

    Article  ADS  Google Scholar 

  23. C. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. A 86, 3903 (2001).

    Article  ADS  Google Scholar 

  24. M. Witzany, R. Rossbach, W.-M. Shulz, M. Jetter, and P. Michler, Phys. Rev. B 83, 205305 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Lebedev.

Additional information

Original Russian Text © D.V. Lebedev, A.M. Mintairov, A.S. Vlasov, V.Yu. Davydov, M.M. Kulagina, S.I. Troshkov, A.A. Bogdanov, A.N. Smirnov, A. Gocalinska, G. Juska, E. Pelucchi, J. Kapaldo, S. Rouvimov, J.L. Merz, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 7, pp. 1066–1070.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, D.V., Mintairov, A.M., Vlasov, A.S. et al. Lasing in microdisks with an active region based on lattice-matched InP/AlInAs nanostructures. Tech. Phys. 62, 1082–1086 (2017). https://doi.org/10.1134/S1063784217070106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217070106

Navigation