Skip to main content
Log in

Modelling of fast hydrogen permeability of alloys for membrane gas separation

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The method of measuring the specific hydrogen permeability is used to study various alloys that are promising for gas separation installations. The nonlinear boundary value problem of hydrogen permeability complying with the specific features of the experiment and its modifications taking into account the high transfer rate is presented. Substantial difference from the quasi-equilibrium model (Richardson approximation in the assumption of the equilibrium Sieverts’ law near the surface) has been discussed. The model is tested on published experimental data on Ta77Nb23 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Volkl, Hydrogen in Metals I: Basic Properties and Hydrogen in Metals. Il, Application Oriented Properties, Vols. 28 and 29 of Topics in Applied Physics (Springer, Berlin, 1978, Mir, Moscow, 1981).

    Google Scholar 

  2. Hydrogen–Metall Interactions, Ed. by A. P. Zakharov (Nauka, Moscow, 1987).

  3. A. A. Pisarev, I. V. Tsvetkov, E. D. Marenkov, and S. S. Yarko, Hydrogen Permeability through Metalls (Mosk. Inzh.-Fiz. Inst., Moscow, 2008).

    MATH  Google Scholar 

  4. Yu. P. Cherdantsev, I. P. Chernov, and Yu. I. Tyurin, Methods of Studying Metal–Hydrogen Systems (Tomsk. Politekh. Univ., Tomsk, 2008).

    Google Scholar 

  5. Hydrogen Isotopes. Fundamental and Applied Studies, Ed. by A. A. Yukhimchuk (RFYaTs-VNIIEF, Sarov, 2009).

  6. I. E. Gabis, Tech. Phys. 44, 90 (1999).

    Article  Google Scholar 

  7. The Hydrogen Economy, Ed. by M. Ball and M. Wietschel (Cambridge Univ. Press, 2009).

  8. R. A. Varin, T. Czujko, and Z. S. Wronski, Nanomaterials for Solid State Hydrogen Storage (Springer, New York, 2009).

    Book  Google Scholar 

  9. Handbook of Hydrogen Storage: New Materials for Future Energy Storage, Ed. by M. Hirscher (Wiley-VCH, Weinheim, 2010).

  10. D. A. Indeitsev and B. N. Semenov, Acta Mech. 195, 295 (2008).

    Article  Google Scholar 

  11. E. Evard, I. Gabis, and V. A. Yartys, Int. J. Hydrogen Energy 35, 9060 (2010).

    Article  Google Scholar 

  12. M. V. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman, Jr., Int._J. Hydrogen Energy 39, 5818 (2014).

    Article  Google Scholar 

  13. Yu. V. Zaika and E. P. Bormatova, Int. J. Hydrogen Energy 36, 1295 (2011).

    Article  Google Scholar 

  14. Yu. V. Zaika and N. I. Rodchenkova, Appl. Mat. Model. 33, 3776 (2009).

    Article  Google Scholar 

  15. Yu. V. Zaika and N. I. Rodchenkova, in Mathematical Modelling (Nova Sci., New York, 2013), pp. 269–302.

    Google Scholar 

  16. S. Kojakhmetov, N. Sidorov, V. Piven, I. Sipatov, I. Gabis, and B. Arinov, J. Alloys Cmpd. 645 Suppl. 1, S36 (2015).

    Article  Google Scholar 

  17. M. D. Dolan, J. Membr. Sci. 362, 12 (2010).

    Article  Google Scholar 

  18. G. Song, M. D. Dolan, M. E. Kellam, D. Liang, and S. Zambelli, J. Alloys Cmpd. 509, 9322 (2015).

    Article  Google Scholar 

  19. L. S. Darken and R. V. Gurri, Physical Chemistry of Metals (Metallurgizdat, Moscow, 1960).

    Google Scholar 

  20. K. A. Terrani, M. Balooch, D. Wongsawaeng, S. Jaiyen, and D. R. Olander, J. Nucl. Mater. 397, 61 (2010).

    Article  ADS  Google Scholar 

  21. Y. Zhang, R. Maeda, M. Komaki, and C. Nishimura, J. Membr. Sci. 269, 60 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Zaika.

Additional information

Original Russian Text © Yu.V. Zaika, N.I. Rodchenkova, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 651–658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaika, Y.V., Rodchenkova, N.I. Modelling of fast hydrogen permeability of alloys for membrane gas separation. Tech. Phys. 62, 669–676 (2017). https://doi.org/10.1134/S1063784217050279

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050279

Navigation