Skip to main content
Log in

Effect of the discharge parameters on the generation of deuterium ions in the plasma of a high-current pulsed vacuum arc with a composite zirconium deuteride cathode

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have studied the mass and charge composition of an ion beam extracted from the plasma of a vacuum arc with a zirconium deuteride cathode for various durations of the arc current pulse (half width at half amplitude) of 2, 4, 7, and 17 μs. It has been established that the fraction of deuterium ions in the vacuum arc plasma increases with the current and the dependence achieve saturation for current of about 1 kA. For the fraction of deuterium atoms in the cathode at a level of 40%, the fraction of deuterium ions in the vacuum arc plasma can exceed 80%. The experimental results have been interpreted theoretically. It has been shown that the main sources of deuterium ions in a microsecond arc discharge are cathode spots. We have developed a model of deuterium desorption during the operation of cathode spots for quantitatively estimating the concentration of deuterium ions in the arc plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Gul’ko, A. A. Klyuchnikov, M. F. Kolomiets, L. V. Mikhailov, and A. E. Shikanov, Ionic Vacuum Devices for Neutron Generation in Electronics (Tekhnika, Kiev, 1988).

    Google Scholar 

  2. S. A. Barengolts, D. Yu. Karnaukhov, A. G. Nikolaev, E. M. Oks, K. P. Savkin, I. V. Uimanov, V. P. Frolova, D. L. Shmelev, and G. Yu. Yushkov, Tech. Phys. 60, 989 (2015).

    Article  Google Scholar 

  3. G. Yu. Yushkov, A. G. Nikolaev, V. P. Frolova, E. M. Oks, G. S. Rumyantsev, and S. A. Barengolts, Tech. Phys. Lett. 40, 1072 (2014).

    Article  ADS  Google Scholar 

  4. G. Y. Yushkov, A. G. Nikolaev, E. M. Oks, and V. P. Frolova, Rev. Sci. Instrum. 87, 02A905 (2016).

    Article  Google Scholar 

  5. A. G. Nikolaev, E. M. Oks, K. P. Savkin, G. Yu. Yushkov, and I. G. Brown, Rev. Sci. Instrum. 83, 02A501 (2012).

    Article  Google Scholar 

  6. A. S. Bugaev, A. V. Vizir, V. I. Gushenets, et al., Laser Part. Beams 21, (2), 139 (2003).

    ADS  Google Scholar 

  7. G. Yushkov, E. Oks, A. Anders, and I. Brown, J. Appl. Phys. 88, 5618 (2000).

    Article  ADS  Google Scholar 

  8. G. I. Kir’yanov, Generators of Fast Neutrons (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  9. S. I. Sukhoveev, Sov. Phys. Tech. Phys. 24, 605 (1979).

    ADS  Google Scholar 

  10. B. Jutner, V. Puchkarev, E. Hantzsche, and I. Beilis, Cathode spots, in Handbook of Vacuum Arc Science and Technology, Ed. by: R. L. Boxman, D. M. Sanders, and Ph. J. Martin (Noyes, Park Ridge, 1995), p.124.

    Google Scholar 

  11. M. E. Cuneo, IEEE Trans. Dielectr. Electr. Insul. 6, 469 (1999).

    Article  Google Scholar 

  12. C. D. Scott and M. Lefebvre, J. Thermophys. Heat Transfer 10, 426 (1996).

    Article  Google Scholar 

  13. D. L. Shmelev, S. A. Barengol’ts, and N. N. Shchitov, Tech. Phys. Lett. 40, 783 (2014).

    Article  ADS  Google Scholar 

  14. I. G. Kesaev, Cathode Processes of an Electric Arc (Nauka, Moscow, 1968).

    Google Scholar 

  15. G. A. Mesyats, Ectons in Vacuum Discharge: Breakdown, Spark, Arc (Nauka, Moscow, 2000).

    Google Scholar 

  16. I. V. Uimanov, D. L. Shmelev, and S. A. Barengolts, in Proceedings of the 27th International Symposium on Discharges and Electrical Insulation in Vacuum, Suzhou, 2016, Vol. 1, pp. 357–360.

    Google Scholar 

  17. G. A. Mesyats and I. V. Uimanov, Izv. Vyssh. Uchebn. Zaved., Fiz. 58 (9/2), 204 (2015).

    Google Scholar 

  18. V. L. Gelezunas, P. K. Conn, and R. H. Price, J. Electrochem. Soc. 110, 799 (1963).

    Article  Google Scholar 

  19. Metal Hydrides, Ed. by W. Mueller, J. Blackledge, and G. Libowitz (Academic, New York, 1968, Atomizdat, Moscow, 1973).

  20. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991, CRC, Boca Raton, 1997).

  21. S. M. Shkol’nik, IEEE Trans. Plasma Sci. 29, 675 (2001).

    Article  ADS  Google Scholar 

  22. B. Juttner and I. Kleberg, J. Phys. D: Appl. Phys. 33, 2025 (2000).

    Article  ADS  Google Scholar 

  23. A. Anders, Cathodic Arcs (Springer, New York, 2008).

    Book  Google Scholar 

  24. J. E. Daalder, J. Phys. D: Appl. Phys. 10, 2225 (1977).

    Article  ADS  Google Scholar 

  25. B. Jüttner, J. Phys. D: Appl. Phys. 34, R103 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nikolaev.

Additional information

Original Russian Text © A.G. Nikolaev, E.M. Oks, V.P. Frolova, G.Yu. Yushkov, D.L. Shmelev, I.V. Uimanov, S.A. Barengol’ts, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 681–687.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.G., Oks, E.M., Frolova, V.P. et al. Effect of the discharge parameters on the generation of deuterium ions in the plasma of a high-current pulsed vacuum arc with a composite zirconium deuteride cathode. Tech. Phys. 62, 701–707 (2017). https://doi.org/10.1134/S1063784217050218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050218

Navigation