Skip to main content
Log in

Output characteristics of mixed holograms in the (\(\left( {\overline {11} 0} \right)\))-Cut Bi12TiO20 crystal

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An analytical solution to the system of linear differential equations that describe the reconstruction of object wave using a transmission holographic grating formed in a cubic photorefractive piezoelectric (\(\left( {\overline {11} 0} \right)\))- cut crystal with the 23 symmetry is derived. The solution is used to interpret the experimental results on the dependence of the diffraction efficiency of mixed holograms on the thickness of the Bi12TiO20 crystal at a fixed orientation angle and three azimuths of linear polarization of the readout reference beam. The best agreement of the theoretical and experimental results on mixed holograms is reached when the inverse piezoelectric effect and photoelasticity are taken into account in addition to the conventional electrooptic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).

    Google Scholar 

  2. U. Bortolozzo, S. Residori, J.-P. Huignard, and A. A. Kamshilin, Fundamentals of Picoscience (CRS, New York, 2014), pp. 3–26.

    Google Scholar 

  3. A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Yu. F. Kargin, Kvant. Elektron. 41, 847 (2011).

    Article  ADS  Google Scholar 

  4. S. I. Stepanov, Rep. Prog. Phys. 57 (1), 39 (1994).

    Article  ADS  Google Scholar 

  5. J. Ricardo, M. Muramatsu, F. Palacios, M. R. R. Gesualdi, J. L. Valin, and M. Lopez, Opt. Lasers Eng. 51, 949 (2013).

    Article  Google Scholar 

  6. V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, Ferroelectrics 110, 235 (1990).

    Article  Google Scholar 

  7. V. V. Shepelevich, S. F. Nichiporko, A. E. Zagorskiy, N. N. Egorov, Yi Hu, K. H. Ringhofer, E. Shamonina, and V. Ya. Gayvoronsky, Ferroelectrics 226, 305 (2002).

    Article  Google Scholar 

  8. V. V. Shepelevich, A. V. Makarevich, and S. M. Shandarov, Tech. Phys. Lett. 40, 1024 (2014).

    Article  ADS  Google Scholar 

  9. G. Montemezzani and M. Zgonik, Phys. Rev. E 55, 1035 (1997).

    Article  ADS  Google Scholar 

  10. S. M. Shandarov, S. S. Shmakov, N. I. Burimov, O. S. Syuvaeva, Yu. F. Kargin, and V. M. Petrov, JETP Lett 95, 618 (2012).

    Article  ADS  Google Scholar 

  11. S. M. Shandarov, S. S. Shmakov, P. V. Zuev, N. I. Burimov, Yu. F. Kargin, V. V. Shepelevich, P. I. Ropot, and V. G. Gudelev, Opt. Zh. 80 (7), 5 (2013).

    Google Scholar 

  12. D. A. Fish, A. K. Powell, T. J. Hall, P. M. Jeffrey, and R. W. Eason, Opt. Commun. 98, 349 (1993).

    Article  ADS  Google Scholar 

  13. P. M. Jeffrey, S. L. Clapham, R. W. Eason, D. A. Fish, A. K. Powell, T. J. Hall, and N. A. Vainos, Opt. Commun. 98, 357 (1993).

    Article  ADS  Google Scholar 

  14. K. Shcherbin, S. Odoulov, R. Litvinov, E. Shandarov, and S. Shandarov, Opt. Soc. Am. B 13, 2268 (1996).

    Article  ADS  Google Scholar 

  15. V. V. Shepelevich, Holography in Photorefractive Optically Active Crystals (Belarus. Gos. Univ., Minsk, 2012).

    Google Scholar 

  16. N. S. Piskunov, Differential and Integral Calculus (Nauka, Moscow, 1985, Routledge, London, 1965).

    MATH  Google Scholar 

  17. A. V. Makarevich, V. V. Shepelevich, P. I. Ropot, V. N. Navnyko, and S. M. Shandarov, Tech. Phys. Lett. 41, 942 (2015).

    Article  ADS  Google Scholar 

  18. E. Shamonina, M. Mann, K. H. Ringhofer, A. Kiessling, and R. Kowarschik, Opt. Quantum Electron. 28, 25 (1996).

    Article  Google Scholar 

  19. E. Shamonina, G. Cedilnik, M. Mann, A. Kiessling, D. J. Webb, R. Kowarschik, and K. H. Ringhofer, Appl. Phys. B 64, 49 (1997).

    Article  ADS  Google Scholar 

  20. E. Shamonina, V. P. Kamenov, K. H. Ringhofer, G. Cedilnik, A. Kiessling, R. Kowarschik, and D. J. Webb, Opt. Commun. 146, 62 (1998).

    Article  ADS  Google Scholar 

  21. A. E. Zagorskiy, V. V. Shepelevich, S. F. Nichiporko, N. N. Egorov, Yi Hu, R. H. Ringhofer, and E. Shamonina, Opt. Mater. 18, 131 (2001).

    Article  ADS  Google Scholar 

  22. I. V. Mitin and V. S. Rusakov, Analysis and Processing of Experimental Data (NEVTs FIPT, Moscow, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shepelevich.

Additional information

Original Russian Text © A.V. Makarevich, V.V. Shepelevich, S.M. Shandarov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 766–771.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarevich, A.V., Shepelevich, V.V. & Shandarov, S.M. Output characteristics of mixed holograms in the (\(\left( {\overline {11} 0} \right)\))-Cut Bi12TiO20 crystal. Tech. Phys. 62, 785–790 (2017). https://doi.org/10.1134/S1063784217050188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050188

Navigation