Skip to main content

Mathematical modeling the formation of a histone octamer

Abstract

A physical model of the interaction of protein molecules and their ability to form complex biological systems for the in vitro case in a solution of monovalent salt has been developed. Their reactive abilities using the methods of electrostatics based on the example of the step-by-step formation of the histone octamer from the H2A, H2B, H3, and H4 proteins have been studied. To analyze the ability of protein molecules to form compounds the matrix of potential energy of interactions between protein molecules in solutions with different concentrations of monovalent salt has been examined.

This is a preview of subscription content, access via your institution.

References

  1. W. Iwasaki, Y. Miya, N. Horikoshi, A. Osakabe, H. Taguchi, H. Tachiwana, T. Shibata, W. Kagawa, and H. Kurumizaka, FEBS Open Bio 3, 363 (2013).

    Article  Google Scholar 

  2. D. D. Banks and L. M. Gloss, Biochem. 42, 6827 (2003).

    Article  Google Scholar 

  3. L. Mariso-Ramírez, M. G. Kann, B. A. Shoemaker, and D. Landsman, Expert Rev. Proteomics 2, 719 (2005).

    Article  Google Scholar 

  4. R. Dias and B. Lindman, DNA Interactions with Polymers and Surfactans (Wiley, Hoboken, 2008).

    Book  Google Scholar 

  5. S. S. Dukhin, Dielectric Phenomena and Double Layer in Disperse Systems and Polyelectrolytes (Naukova Dumka, Kiev, 1972).

    Google Scholar 

  6. K. B. Oldham, J. Electroanal. Chem. 613, 131 (2008).

    Article  Google Scholar 

  7. J. H. Masliyah and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (Wiley, Hoboken, 2006).

    Book  Google Scholar 

  8. A. T. Fenley, D. A. Adams, and A. V. Onufriev, Biophys. J. 99, 1577 (2010).

    ADS  Article  Google Scholar 

  9. K. G. Kulikov and T. V. Koshlan, Tech. Phys. 61, 1572 (2016).

    Article  Google Scholar 

  10. V. A. Saranin, Phys. Usp. 42, 385 (1999).

    ADS  Article  Google Scholar 

  11. V. A. Saranin, Phys. Usp. 45, 1287 (2002).

    ADS  Article  Google Scholar 

  12. W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1950, Inostrannaya Literatura, 1954).

    MATH  Google Scholar 

  13. Y. Moriwaki, T. Yamane, H. Ohtomo, M. Ikeguchi, J. Kurita, M. Sato, A. Nagadoi, H. Shimojo, and Y. Nishimura, Sci. Rep. 6 (24999), 1 (2016).

    Google Scholar 

  14. V. Karantza, E. Freire, and E. N. Moudrianakis, Biochemistry 40, 13114 (2001).

    Article  Google Scholar 

  15. V. M. Vol’kenshtein, Molecules and Life (Nauka, Moscow, 1965).

    Google Scholar 

  16. Yu. D. Semchikov, High Molecular Weight Compounds (Akademiya, Moscow, 2010).

    Google Scholar 

  17. S. N. Khrapunov, A. I. Dragan, A. F. Protas, and G. D. Berdyshev, Biochim. Biophys. Acta 787, 97 (1984).

    Article  Google Scholar 

  18. V. Karantza, E. Freire, and E. N. Moudrianakis, Biochemistry 35, 2037 (1996).

    Article  Google Scholar 

  19. T. H. Eickbush and E. N. Moudrianakis, Biochemistry 17, 4955 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Kulikov.

Additional information

Original Russian Text © T.V. Koshlan, K.G. Kulikov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 665–671.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koshlan, T.V., Kulikov, K.G. Mathematical modeling the formation of a histone octamer. Tech. Phys. 62, 684–690 (2017). https://doi.org/10.1134/S1063784217050152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050152