Skip to main content
Log in

Specifics of operation of a cold-cathode thyratron with a backward voltage half-wave

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The specifics of operating a metal-ceramic TPI1-10k/50 thyratron in electric circuits with capacitance, inductance, and active resistance have been examined under circuit parameters that establish oscillatory current. Experiments have been performed at an anode voltage as high as 30 kV, a forward current of up to 7.6 kA, and a length of the first current half-period that varies from 0.38 to 1.9 μs. The data on operating modes in which this thyratron may handle a backward current wave and when current interruption is observed in the second half-period have been obtained. It has been demonstrated that a certain current flows through the thyratron in the backward direction during the interruption process. The amplitude of this current and the maximum backward voltage at the thyratron define whether the current is interrupted or repeat back-voltage device breakdown occurs. If the maximum backward current is on the level of several hundred amperes, complete current interruption occurs at backward voltages of up to 12 kV. The physical mechanisms of current interruption have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci. 17, 748 (1989).

    Article  ADS  Google Scholar 

  2. P. Bickel, J. Christiansen, K. Frank, A. Gortler, W. Hartmann, R. Kowalewicz, A. Linsenmeyer, C. Kozlik, R. Stark, and P. Wiesneth, IEEE Trans. Electron Devices 38, 712 (1991).

    Article  ADS  Google Scholar 

  3. K. Frank, E. Dewald, C. Bickes, U. Ernst, M. Iberler, J. Meier, U. Pruker, A. Rainer, M. Schlaug, and J. Schwab, IEEE Trans. Plasma Sci. 27, 1008 (1999).

    Article  ADS  Google Scholar 

  4. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, O. B. Frants, Y. D. Korolev, I. A. Shemyakin, and K. Frank, IEEE Trans. Plasma Sci. 29, 802 (2001).

    Article  ADS  Google Scholar 

  5. Y. D. Korolev, N. V. Landl, V. G. Geyman, A. V. Bolotov, V. S. Kasyanov, V. O. Nekhoroshev, and S. S. Kovalsky, IEEE Trans. Plasma Sci. 43, 2349 (2015).

    Article  ADS  Google Scholar 

  6. R. P. Lamba, V. Pathania, B. L. Meena, H. Rahaman, U. N. Pal, and R. Prakash, Rev. Sci. Instrum. 86, 103508 (2015).

    Article  ADS  Google Scholar 

  7. B. L. Meena, S. K. Rai, M. S. Tyagi, U. N. Pal, M. Kumar, and A. K. Sharma, J. Phys. Conf. Ser. 208, 012110 (2010).

    Article  Google Scholar 

  8. J. Zhang, J. P. Zhao, and Q. G. Zhang, IEEE Trans. Plasma Sci. 42, 2037 (2014).

    Article  ADS  Google Scholar 

  9. N. V. Voitenko, A. S. Yudin, N. S. Kuznetsova, and V. D. Bochkov, J. Phys. Conf. Ser. 652, 012059 (2015).

    Article  Google Scholar 

  10. Y. D. Korolev, O. B. Frants, N. V. Landl, I. A. Shemyakin, and V. G. Geyman, IEEE Trans. Plasma Sci. 41, 2087 (2013).

    Article  ADS  Google Scholar 

  11. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D: Appl. Phys. 32, 699 (1999).

    Article  ADS  Google Scholar 

  12. Yu. D. Korolev, G. A. Mesyats, and A. P. Khuzeev, Dokl. Akad. Nauk SSSR 25, 573 (1980).

    Google Scholar 

  13. A. V. Kozyrev, Yu. D. Korolev, G. A. Mesyats, Yu. N. Novoselov, and I. A. Shemyakin, Sov. Phys. Tech. Phys. 26, 1053 (1981).

    Google Scholar 

  14. Y. D. Korolev, G. A. Mesyats, and A. M. Yarosh, High Energy Chem. 21, 389 (1987).

    Google Scholar 

  15. J. Hu and J. L. Rovey, J. Appl. Phys. 114, 073301 (2013).

    Article  ADS  Google Scholar 

  16. J. H. Feng, L. Zhou, Y. C. Fu, J. H. Zhang, R. K. Xu, F. X. Chen, L. B. Li, and S. J. Meng, AIP Adv. 4, 077115 (2014).

    Article  ADS  Google Scholar 

  17. M. S. Benilov and L. G. Benilova, IEEE Trans. Plasma Sci. 43, 2247 (2015).

    Article  ADS  Google Scholar 

  18. K. Frank, Y. D. Korolev, and A. I. Kuzmichev, IEEE Trans. Plasma Sci. 30, 357 (2002).

    Article  ADS  Google Scholar 

  19. A. V. Akimov, P. A. Bak, A. A. Korepanov, P. V. Logachev, V. D. Bochkov, D. V. Bochkov, V. M. Dyagilev, and V. G. Ushich, Vestn. Novosib. Gos. Univ., Ser. Fiz. 3 (4), 68 (2008).

    Google Scholar 

  20. N. N. Koval, Y. F. Ivanov, I. V. Lopatin, Y. H. Akhmadeev, V. V. Shugurov, O. V. Krysina, and V. V. Denisov, Russ._J. Gen. Chem. 85, 1326 (2015).

    Article  Google Scholar 

  21. A. V. Kazakov, A. V. Medovnik, V. A. Burdovitsin, and E. M. Oks, Tech. Phys. 60, 213 (2015).

    Article  Google Scholar 

  22. N. V. Gavrilov and A. I. Men’shakov, Tech. Phys. 61, 669 (2016).

    Article  Google Scholar 

  23. J. Hu and J. L. Rovey, J. Phys. D: Appl. Phys. 45, 465203 (2012).

    Article  ADS  Google Scholar 

  24. V. N. Devyatkov, N. N. Koval, P. M. Schanin, V. P. Grigoryev, and T. V. Koval, Laser Part. Beams 21, 243 (2003).

    Article  ADS  Google Scholar 

  25. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys. 74, 5366 (1993).

    Article  ADS  Google Scholar 

  26. Yu. D. Korolev, N. V. Landl, V. G. Geyman, O. B. Frants, I. A. Shemyakin, and V. O. Nekhoroshev, Plasma Phys. Rep. 42, 799 (2016).

    Article  ADS  Google Scholar 

  27. T. Koval, V. N. Devyatkov, and N. V. Hung, J. Phys. Conf. Ser. 652, 012061 (2015).

    Article  Google Scholar 

  28. A. I. Ryabchikov, I. A. Ryabchikov, I. B. Stepanov, and U. P. Usov, Surf. Coat. Technol. 201, 6523 (2007).

    Article  Google Scholar 

  29. A. I. Ryabchikov, Rev. Sci. Instrum. 63, 2425 (1992).

    Article  ADS  Google Scholar 

  30. Y. D. Korolev, O. B. Frants, V. G. Geyman, V. S. Kasyanov, and N. V. Landl, IEEE Trans. Plasma Sci. 40, 2951 (2012).

    Article  ADS  Google Scholar 

  31. Y. D. Korolev, O. B. Frants, N. V. Landl, V. S. Kasyanov, S. I. Galanov, O. I. Sidorova, Y. Kim, L. A. Rosocha, and I. B. Matveev, IEEE Trans. Plasma Sci. 40, 535 (2012).

    Article  ADS  Google Scholar 

  32. N. V. Landl, Y. D. Korolev, O. B. Frants, V. G. Geyman, and A. V. Bolotov, J. Phys. Conf. Ser. 652, 012049 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Korolev.

Additional information

Original Russian Text © Yu.D. Korolev, N.V. Landl, V.G. Geiman, O.B. Frants, A.V. Bolotov, V.O. Nekhoroshev, V.S. Kasyanov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 688–695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, Y.D., Landl, N.V., Geiman, V.G. et al. Specifics of operation of a cold-cathode thyratron with a backward voltage half-wave. Tech. Phys. 62, 708–715 (2017). https://doi.org/10.1134/S1063784217050140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050140

Navigation