Skip to main content

Mathematical simulation of complex formation of protein molecules allowing for their domain structure

Abstract

A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap1 and histones H2A and H2B. The capability of proteins to form stable biological complexes that allow for different segments of amino acid sequences has been analyzed. The ability of protein molecules to form compounds has been considered by calculating matrices of electrostatic potential energy of amino acid residues constituting the polypeptide chain. The method of block matrices has been used in the analysis of the ability of protein molecules to form complex biological compounds.

This is a preview of subscription content, access via your institution.

References

  1. J. Zlatanova, C. Seebart, and M. Tomschik, FASEB J. 21, 1294 (2007).

    Article  Google Scholar 

  2. S. D’Arcy, K. W. Martin, T. Panchenko, X. Chen, S. Bergeron, L. A. Stargell, B. E. Black, and K. Luger, Mol. Cell 51, 662 (2013).

    Article  Google Scholar 

  3. A. J. Andrews, G. Downing, K. Brown, Y. J. Park, and K. Luger, J. Biol. Chem. 283, 32412 (2008).

    Article  Google Scholar 

  4. C. Aguilar-Gurrieri, EMBO J. 35, 1465 (2016).

    Article  Google Scholar 

  5. C. Aguilar-Gurrieri, “Structural studies of nucleosome assembly,” Thesis to obtain the title of Docteur De L’Universite De Grenoble (European Molecular Biology Laboratory, 2013).

    Google Scholar 

  6. R. Dias and B. Lindman, DNA Interactions with Polymers and Surfactants (Wiley, Hoboken, 2007), pp. 135–172.

    Google Scholar 

  7. A. Bowman, R. Ward, N. Wiechens, V. Singh, H. El-Mkami, D. G. Norman, and T. Owen-Hughes, Mol. Cell 41, 398 (2011).

    Article  Google Scholar 

  8. T. T. Berezov, Biological Chemistry (Meditsina, Moscow, 1998).

    Google Scholar 

  9. http://www.uniprot.org. Accessed July 30, 2016.

  10. Yu. D. Semchikov, Macromolecular Compounds (Akademiya, Moscow, 2010).

    Google Scholar 

  11. K. G. Kulikov and T. V. Koshlan, Tech. Phys. 61, 1572 (2016).

    Article  Google Scholar 

  12. S. Shimoyama, A. Nagadoi, H. Tachiwana, M. Yamada, M. Sato, H. Kurumizaka, Y. Nishimura, and S. Akashi, J. Mass. Spectrom. 45, 900 (2010).

    Article  Google Scholar 

  13. T. Moss, P. D. Cary, B. D. Abercrombie, C. Crane-Robinson, and E. M. Bradbury, Eur. J. Biochem. 71, 337 (1976).

    Article  Google Scholar 

  14. A. Ramaswamy, I. Bahar, and I. Ioshikhes, Proteins: Struct., Funct., Bioinf. 58, 683 (2004).

    Article  Google Scholar 

  15. Y. J. Park and K. Luger, Proc. Natl. Acad. Sci. U. S. A. 103, 1248 (2006).

    ADS  Article  Google Scholar 

  16. E. Z. Demidenko, Linear and Nonlinear Regressions (Finansy i Statistika, Moscow, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Kulikov.

Additional information

Original Russian Text © T.V. Koshlan, K.G. Kulikov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 4, pp. 489–497.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koshlan, T.V., Kulikov, K.G. Mathematical simulation of complex formation of protein molecules allowing for their domain structure. Tech. Phys. 62, 509–516 (2017). https://doi.org/10.1134/S1063784217040119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217040119