Skip to main content
Log in

Specific features of growth and structure of LiNbO3 : Zn crystals near the ZnO concentration threshold of 6.76 mol %

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The crystallization conditions and Raman spectra of LiNbO3 : Zn crystals (0.02–8.91 mol % ZnO in the melt) have been investigated. It has been established that the most favorable conditions for growing optically and compositionally homogeneous heavily doped LiNbO3 : Zn crystals, which are characterized by a low photorefractive effect, are implemented in the ZnO concentration range of ~4.0–6.76 mol % in the melt. Since the distribution coefficient K eff decreases significantly with an increase in the ZnO concentration in the melt, one can obtain LiNbO3 : Zn crystals with significantly different defect structures but identical zinc concentrations. A change in the zinc concentration in crystals has been shown to induce a stepwise change in the sequence order of the main (Li and Nb) and doping (Zn) cations and vacancies and stepwise anisotropic expansion of the oxygen octahedra along the polar axis. The number of kinks in the concentration behavior of the spectral-line widths (five kinks for the lines with frequencies of 630 (A 1(TO)) and 876 cm–1 (A 1(LO))) significantly exceeds the number of thresholds (two) known from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Günter, Springer Series in Optical Sciences (Springer Science+Business Media: LLC, New York, 2007).

    Google Scholar 

  2. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum and Polaritons (Nauka, Moscow, 2003).

    Google Scholar 

  3. M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, and M. D. Fontana, J. Phys.: Conf. Ser. 416, 012001 (2013).

    Google Scholar 

  4. M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, V. V. Efremov, O. E. Kravchenko, V. I. Skiba, N. V. Sidorov, and I. N. Efremov, Neorg. Mater. 51, 428 (2015).

    Google Scholar 

  5. M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, N. V. Sidorov, V. V. Efremov, I. N. Efremov, N. A. Teplyakova, and D. V. Manukovskaya, in Advanced Materials Manufacturing, Physics, Mechanics and Applications, Ed. by I. A. Parinov, V. Yu. Topolov (Springer, Heidelberg, 2016), Springer Proc. Phys. 175 (2016). doi 10.1007/978-3-319-26324-3

  6. M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, and N. V. Sidorov, J. Cryst. Growth 386, 113 (2014).

    Article  ADS  Google Scholar 

  7. N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, A. A. Gabain, and O. Yu. Pikul’, Opt. Spectrosc. 117, 72 (2014).

    Article  ADS  Google Scholar 

  8. T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, Crystallogr. Rep. 53, 573 (2008).

    Article  ADS  Google Scholar 

  9. T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, JETP Lett. 73, 103 (2001).

    Article  ADS  Google Scholar 

  10. S. Uda and W. A. Tiller, J. Cryst. Growth 121, 155 (1992).

    Article  ADS  Google Scholar 

  11. H. Kimura, H. Koizumi, T. Uchida, and S. Uda, J. Cryst. Growth 311, 1553 (2009).

    Article  ADS  Google Scholar 

  12. V. V. Nalbaldyan, B. S. Medvedev, V. I. Nalbaldyan, and A. V. Chinenova, Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 980 (1988).

    Google Scholar 

  13. V. V. Konovalova, Candidate’s Dissertation in Chemistry (Moscow, 2009).

    Google Scholar 

  14. M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, O. E. Kravchenko, A. A. Yanichev, and N. V. Sidorov, Neorg. Mater. 49, 765 (2013).

    Google Scholar 

  15. N. V. Sidorov, M. N. Palatnikov, and V. T. Kalinnikov, Tr. Kol’skogo Nauchn. Tsentra Ross. Akad. Nauk, Khim. Materialoved. (Apatity, 2015), pp. 464–468.

    Google Scholar 

  16. M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspekt. Mater., No. 2, 93 (2011).

    Google Scholar 

  17. Yu. M. Tairov and V. P. Tsvetkov, Technology of Semiconductor and Dielectric Materials (Vysshaya Shkola, Moscow, 1983).

    Google Scholar 

  18. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. A. Gabain, and I. N. Efremov, Opt. Spectrosc. 120, 633 (2016).

    Article  ADS  Google Scholar 

  19. T. R. Volk and N. M. Rubinina, Phys. Solid State 33, 1180 (1991).

    Google Scholar 

  20. U. Schlarb, M. Woehlecke, B. Gather, A. Reichert, K. Betzler, T. Volk, and N. Rubinina, Opt. Mater. 4, 791 (1995).

    Article  ADS  Google Scholar 

  21. Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, J. Cryst. Growth 233, 537 (2001).

    Article  ADS  Google Scholar 

  22. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wohlecke, Appl. Phys. B 68, 795 (1999).

    Article  ADS  Google Scholar 

  23. L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, Appl. Phys. B 78, 769 (2004).

    Article  ADS  Google Scholar 

  24. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. A. Gabain, and I. N. Efremov, Perspekt. Mater., No. 7, 5 (2015).

    Google Scholar 

  25. N. V. Sidorov, B. N. Mavrin, P. G. Chufyrev, and M. N. Palatnikov, in Phonon Spectra of Lithium Niobate Monocrystals, Ed. by V. T. Kalinnikov (Kol’skii Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 2012).

  26. M. D. Fontana and P. Bourson, Appl. Phys. Rew. 2, 046002 (2015).

    Google Scholar 

  27. V. S. Gorelik and P. P. Sverbil’, Neorg. Mater. 51, 1190 (2015).

    Article  Google Scholar 

  28. V. S. Gorelik, Tr. Fiz. Inst. im. P. N. Lebedeva, Ross. Akad. Nauk 132, 15 (1982).

    Google Scholar 

  29. N. B. Sidorov, M. H. Palatnikov, and V. T. Kalinnikov, Opt. Spectrosc. 82, 32 (1997).

    ADS  Google Scholar 

  30. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. B 61, 272 (2000).

    Article  ADS  Google Scholar 

  31. V. Caciuc and A. V. Postnikov, Phys. Rev. B 64, 224403 (2001).

    Article  ADS  Google Scholar 

  32. Y. Repelin, E. Husson, F. Bennani, and C. Proust, J. Phys. Chem. Solids 60, 819 (1999).

    Article  ADS  Google Scholar 

  33. A. A. Anik’ev, Inzh. Zh.: Nauka Innovatsii, No. 7, 1 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Additional information

Original Russian Text © N.V. Sidorov, M.N. Palatnikov, A.A. Yanichev, R.A. Titov, O.V. Makarova, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 3, pp. 394–400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Palatnikov, M.N., Yanichev, A.A. et al. Specific features of growth and structure of LiNbO3 : Zn crystals near the ZnO concentration threshold of 6.76 mol %. Tech. Phys. 62, 417–423 (2017). https://doi.org/10.1134/S1063784217030215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217030215

Navigation