Skip to main content
Log in

Effect of atomic silicon and germanium beams on the growth kinetics of Si1 – x Ge x layers in Si–GeH4 molecular beam epitaxy

  • Solid State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The steady-state kinetics of growth of Si1 – x Ge x layers in one version of hybrid molecular beam epitaxy with a molecular germane source and a sublimating silicon bar has been studied. It has been demonstrated that the processes of capture of hydride molecule radicals by the epitaxial surface and their subsequent decomposition must be taken into account in the analysis of growth kinetics. The comparison of experimental data with the results of kinetic analysis has revealed a close match between them. At low germane pressures \({P_{Ge{H_4}}}\) < 0.5 mTorr, the nature of the growth process is defined exclusively by the specifics of interaction between the molecular beam of Ge monohydride with the growth surface. The influence of the atomic Ge beam from the Si source only manifests at germane pressures exceeding 1 mTorr. Under these conditions, the fluxes of Ge and Si atoms from the sublimating Si source become equal, and the concentration of germyl molecules on the surface reaches saturation. The observed increase in the \({V_{Ge{H_3}}}\) parameter is associated with the activating influence of the flux of silicon atoms from the sublimating source on the decomposition of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Halpin, St. D. Rhead, A. M. Sanchez, M. Myronov, and D. R. Leadley, Semicond. Sci. Technol. 30, 114009 (2015).

    Article  ADS  Google Scholar 

  2. J. M. Hartmann, Y. Bogumilowicz, F. Andrieu, P. Holliger, G. Rolland, and T. Billon, J. Cryst. Growth 277, 114 (2005).

    Article  ADS  Google Scholar 

  3. J. Zhang, J. H. Neave, X. B. Li, P. F. Fewster, H. A. W. El Mubarek, P. Ashburn, I. Z. Mitrovic, O. Buiu, and S. Hall, J. Cryst. Growth 278, 505 (2005).

    Article  ADS  Google Scholar 

  4. H. W. Kim, S. Choi, S. Hong, H. K. Jung, G. D. Lee, E. Yoon, and C. S. Kim, Appl. Phys. Lett. 93, 221902 (2008).

    Article  ADS  Google Scholar 

  5. D. W. Greve, Mater. Sci. Eng. B 18, 22 (1993).

    Article  Google Scholar 

  6. Y. M. Wu and R. M. Nix, Surf. Sci. 306, 59 (1994).

    Article  ADS  Google Scholar 

  7. J. Thiesen, E. Iwaniczko, K. M. Jones, A. Mahan, and R. Crandall, Appl. Phys. Lett. 75, 992 (1999).

    Article  ADS  Google Scholar 

  8. L. K. Orlov, A. V. Potapov, and S. V. Ivin, Tech. Phys. 45, 770 (2000).

    Article  Google Scholar 

  9. V. A. Tolomasov, L. K. Orlov, A. V. Potapov, S. P. Svetlov, Yu. N. Drozdov, A. D. Gudkova, R. A. Rubtsova, and A. V. Kornaukhov, Crystallogr. Rep. 43, 493 (1998).

    ADS  Google Scholar 

  10. V. G. Shengurov, V. Yu. Chalkov, S. A. Denisov, S. P. Svetlov, and D. V. Shengurov, Vak. Tekh. Tekhnol. 21 (1), 45 (2011).

    Google Scholar 

  11. A. V. Potapov, L. K. Orlov, and S. V. Ivin, Thin Solid Films 336, 191 (1999).

    Article  Google Scholar 

  12. L. K. Orlov and S. V. Ivin, Russ. J. Gen. Chem. 85, 2686 (2015).

    Article  Google Scholar 

  13. L. K. Orlov, Zs. J. Horvath, N. L. Ivina, V. I. Vdovin, E. A. Steinman, M. L. Orlov, and Yu. A. Romanov, Opto-Electron. Rev. 11 (2), 169 (2003).

    Google Scholar 

  14. B. Cunningham, J. O. Chu, and S. Akbar, Appl. Phys. Lett. 59, 3574 (1991).

    Article  ADS  Google Scholar 

  15. K. J. Kim, M. Suemitsu, M. Yamanaka, and N. Miyamoto, Appl. Phys. Lett. 62, 3461 (1993).

    Article  ADS  Google Scholar 

  16. N. Taylor, H. Kim, P. Desjardins, Y. L. Foo, and J. E. Greene, Appl. Phys. Lett. 76, 2853 (2000).

    Article  ADS  Google Scholar 

  17. L. K. Orlov and S. V. Ivin, Russ. J. Phys. Chem. B 10, 219.

  18. H. Rauscher, J. Braun, and R. Behm, Appl. Phys. A 76, 711 (2003).

    Article  ADS  Google Scholar 

  19. D. J. Robbins, J. L. Glasper, A. G. Cullis, and W. J. Leong, J. Appl. Phys. 69, 3729 (1991).

    Article  ADS  Google Scholar 

  20. L. T. Vinh, V. Aubry-Fortuna, Y. Zheng, D. Bouchier, C. Guedj, and G. Hincelin, Thin Solid Films 294, 59 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Orlov.

Additional information

Original Russian Text © L.K. Orlov, S.V. Ivin, V.M. Fomin, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 3, pp. 427–437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, L.K., Ivin, S.V. & Fomin, V.M. Effect of atomic silicon and germanium beams on the growth kinetics of Si1 – x Ge x layers in Si–GeH4 molecular beam epitaxy. Tech. Phys. 62, 449–459 (2017). https://doi.org/10.1134/S1063784217030161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217030161

Navigation